Potential of geo-neutrino measurements at JUNO

The flux of geoneutrinos at any point on the Earth is a function of the abundance and distribution of radioactive elements within our planet. This flux has been successfully detected by the 1-kt KamLAND and 0.3-kt Borexino detectors, with these measurements being limited by their low statistics. The planned 20-kt JUNO detector will provide an exciting opportunity to obtain a high statistics measurement, which will provide data to address several questions of geological importance. This paper presents the JUNO detector design concept, the expected geo-neutrino signal and corresponding backgrounds. The precision level of geo-neutrino measurements at JUNO is obtained with the standard least-squares method. The potential of the Th/U ratio and mantle measurements is also discussed.

[1]  G. Baccolo,et al.  JUNO Conceptual Design Report , 2015, 1508.07166.

[2]  Zheng Wang,et al.  Neutrino Physics with JUNO , 2015, 1507.05613.

[3]  W. McDonough,et al.  Expected geoneutrino signal at JUNO , 2014, Progress in Earth and Planetary Science.

[4]  F. Mantovani,et al.  Reference worldwide model for antineutrinos from reactors , 2014, 1411.6475.

[5]  H. Watanabe,et al.  6Li-loaded directionally sensitive anti-neutrino detector for possible geo-neutrinographic imaging applications , 2014, Scientific Reports.

[6]  E. Lisi,et al.  Status of three-neutrino oscillation parameters, circa 2013 , 2013, 1312.2878.

[7]  J. Cao,et al.  Improved calculation of the energy release in neutron-induced fission , 2012, 1212.6625.

[8]  Jun Cao,et al.  Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos , 2013, 1303.6733.

[9]  W. McDonough,et al.  A reference Earth model for the heat‐producing elements and associated geoneutrino flux , 2013, 1301.0365.

[10]  W. McDonough,et al.  Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle , 2012, 1207.0853.

[11]  F. Mantovani,et al.  Mantle geoneutrinos in KamLAND and Borexino , 2012, 1204.1923.

[12]  W. McDonough,et al.  The many uses of electron antineutrinos , 2012 .

[13]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[14]  A. Jambon,et al.  The chemical composition of the Earth: Enstatite chondrite models , 2010 .

[15]  Michael Wurm,et al.  Observation of geo-neutrinos , 2010 .

[16]  M. Lissia,et al.  Geo-neutrinos and earth's interior , 2007, 0707.3203.

[17]  Don L. Anderson,et al.  New Theory of the Earth: Elasticity and solid-state geophysics , 2007 .

[18]  M. Chen Geo-neutrinos in SNO+ , 2007 .

[19]  M. Decowski,et al.  Experimental investigation of geologically produced antineutrinos with KamLAND , 2005, Nature.

[20]  F. Vissani,et al.  Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.

[21]  M. Grassi,et al.  Determination of neutrino incoming direction in the CHOOZ experiment and supernova explosion location by scintillator detectors , 1999, hep-ex/9906011.

[22]  Albrecht W. Hofmann,et al.  The chemical composition of the Earth , 1995 .

[23]  W. McDonough,et al.  The composition of the Earth , 1995 .