State observer design for analytical non-linear systems

This paper deals with the design of a state observer for analytical control-affine nonlinear systems. By using the notation based on the Kronecker product and power of matrices for the state-space description of these systems, we define an algebraic method for the existence study and the synthesis of nonlinear reduced order state observers.<<ETX>>

[1]  Y. Funahashi Stable state estimator for bilinear systems , 1979 .

[2]  Stephen P. Banks,et al.  A note on non-linear observers , 1981 .

[3]  M. Zeitz,et al.  Extended Luenberger observer for non-linear multivariable systems , 1988 .

[4]  R. J. Miller,et al.  An introduction to the application of the simplest matrix-generalized inverse in systems science , 1978 .

[5]  Darrell Williamson,et al.  Observation of bilinear systems with application to biological control , 1977, Autom..

[6]  F. Rotella,et al.  Design of observers for nonlinear time variant systems , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[7]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[8]  R. Fenton,et al.  State observers and state-feedback controllers for a class of non-linear systems , 1988 .

[9]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[10]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[11]  S. Hara,et al.  Minimal order state observers for bilinear systems , 1976 .

[12]  G. Dauphin-Tanguy,et al.  Non-linear systems: identification and optimal control , 1988 .

[13]  W. Vetter Derivative operations on matrices , 1970 .

[14]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[15]  H. Keller Non-linear observer design by transformation into a generalized observer canonical form , 1987 .