Tensor of coherences parametrization of multiqubit density operators for entanglement characterization

For multiqubit densities, the tensor of coherences (or Stokes tensor) is a real parametrization obtained by the juxtaposition of the affine Bloch vectors of each qubit. While it maintains the tensorial structure of the underlying space, it highlights the pattern of correlations, both classical and quantum, between the subsystems and, due to the affine parametrization, it contains in its components all reduced densities of all orders. The main purpose of our use of this formalism is to deal with entanglement. For example, the detection of bipartite entanglement is straightforward, as it is the synthesis of densities having positive partial transposes between desired qubits. In addition, finding explicit mixtures for families of separable states becomes a feasible issue for few-qubit symmetric densities (we compute it for Werner states) and, more important, it provides some insight into the possible origin of entanglement for such densities.

[1]  U. Fano,et al.  Pairs of two-level systems , 1983 .

[2]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[3]  Richard R. Ernst,et al.  The International Series of Monographs on Chemistry, Vol. 14: Principles of Nuclear Magnetic Resonance in One and Two Dimensions , 1987 .

[4]  Schlienz,et al.  Description of entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[6]  J. Poizat,et al.  Quantum noise of laser diodes , 2000 .

[7]  Ryszard Horodecki,et al.  On the necessary and sufficient conditions for separability of mixed quantum states , 1996 .

[8]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[9]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[10]  D. Bruss,et al.  Separability and distillability in composite quantum systems-a primer , 2000 .

[11]  M. Nielsen,et al.  Interdisciplinary Physics: Biological Physics, Quantum Information, etc. , 2001 .

[12]  M. Lewenstein,et al.  Classification of mixed three-qubit states. , 2001, Physical review letters.

[13]  M. Horodecki,et al.  Mixed-State Entanglement and Quantum Communication , 2001, quant-ph/0109124.

[14]  L. Jakóbczyk,et al.  Geometry of Bloch vectors in two-qubit system , 2001 .

[15]  M. Nielsen,et al.  Separable states are more disordered globally than locally. , 2000, Physical review letters.

[16]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[17]  Some aspects of separability , 2001, quant-ph/0112177.

[18]  M. Horodecki,et al.  Separability of mixed quantum states: linear contractions approach , 2002, quant-ph/0206008.

[19]  E. Sudarshan,et al.  Some Applications for an Euler Angle Parameterization of SU(N) and U(N) , 2002, quant-ph/0212075.

[20]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[21]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[22]  M. Horodecki,et al.  Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .

[23]  Ling-An Wu,et al.  The generalized partial transposition criterion for separability of multipartite quantum states , 2002, quant-ph/0208058.

[24]  N. Khaneja,et al.  Characterization of the Positivity of the Density Matrix in Terms of the Coherence Vector Representation , 2003, quant-ph/0302024.

[25]  Gregg Jaeger,et al.  Quantum Lorentz-group invariants of n-qubit systems , 2003 .

[26]  G. Kimura The Bloch Vector for N-Level Systems , 2003 .

[27]  R. Rossignoli,et al.  Violation of majorization relations in entangled states and its detection by means of generalized entropic forms , 2003, 1505.03611.

[28]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[29]  Bahaa E. A. Saleh,et al.  Multiphoton Stokes-parameter invariant for entangled states , 2003 .

[30]  M. Lewenstein,et al.  Entanglement Properties of Composite Quantum Systems , 2002, quant-ph/0210107.