Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii): A study with WGA‐HRP and extracellular granule cell recording

The neuronal connections of the cerebellar corpus in the guitarfish Platyrhinoidis triseriata were investigated by WGA‐HRP injections and extracellular recording of sensory evoked electrical activity. Injections of WGA‐HRP into the corpus resulted in retrograde labeling of the following cell groups bilaterally: pretectal and accessory optic nuclei, interstitial nucleus of Cajal, nucleus ruber, oculomotor and possibly trochlear nucleus, central (periaqueductal) gray, nucleus H, reticular formation of the midbrain, cerebellar nucleus, caudal part of nucleus R tentatively locus coeruleus and subcoeruleus field, octaval and trigeminal nuclei, intermediate octavolateralis nucleus, medial inferior reticular formation, lateral reticular nucleus, and spinal cord. Unilaterally labeled cells were seen in the contralateral inferior olive, which was found to project in. sagittal zones onto the molecular layer of the corpus. Terminal fields of efferent Purkinje cell axons were labeled over the ipsilateral cerebellar nucleus exclusively. Purkinje cells in different parts of the corpus project topographically onto subdivisions of the nucleus.

[1]  J. Courville,et al.  Rubro‐cerebellar connections in the cat: An experimental study with silver impregnation methods , 1966, The Journal of comparative neurology.

[2]  P. Luiten Afferent and efferent connections of the optic tectum in the carp (Cyprinus carpio L.) , 1981, Brain Research.

[3]  F. Walberg,et al.  Cerebellar afferents from neurons in motor nuclei of cranial nerves demonstrated by retrograde axonal transport of horseradish peroxidase , 1977, Brain Research.

[4]  R Nieuwenhuys,et al.  Comparative anatomy of the cerebellum. , 1967, Progress in brain research.

[5]  S. Hunt,et al.  Projections of the nucleus of the basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study , 1980, The Journal of comparative neurology.

[6]  S. Edwards Autoradiographic studies of the projections of the midbrain reticular formation: Descending projections of nucleus cuneiformis , 1975, The Journal of comparative neurology.

[7]  S. Sharma,et al.  Organization of extrinsic tectal connections in goldfish (Carassius auratus) , 1981, The Journal of comparative neurology.

[8]  P. Witkovsky,et al.  Some aspects of the organization of the optic tectum of the skate Raja , 1980, Neuroscience.

[9]  W. Smeets,et al.  The Central Nervous System of Cartilaginous Fishes: Structure and Functional Correlations , 1983 .

[10]  J. Kimm,et al.  Anatomical evidence that the medial terminal nucleus of the accessory optic tract in mammals provides a visual mossy fiber input to the flocculus , 1978, Brain Research.

[11]  W. Smeets The afferent connections of the tectum mesencephali in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata , 1982, The Journal of comparative neurology.

[12]  H. J. Donkelaar,et al.  Cerebellar corticonuclear projections in the red‐eared turtle Pseudemys scripta elegans , 1983, The Journal of comparative neurology.

[13]  D. M. Koester Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria , 1983, The Journal of comparative neurology.

[14]  T. Hayle A comparative study of spinocerebellar systems in three classes of poikilothermic vertebrates , 1973, The Journal of comparative neurology.

[15]  A. Brodal,et al.  The Inferior Olive. Notes on its Comparative Anatomy, Morphology, and Cytology , 1980 .

[16]  R. Leonard,et al.  The organization of the extraocular motor nuclei in the atlantic stingray, Dasyatis sabina , 1980, The Journal of comparative neurology.

[17]  M. Mesulam,et al.  THE JOURNAL OF HISTOCHEMISTRY AND CYTOCHEMISTRY , 2005 .

[18]  D. Haines,et al.  Evidence of a direct projection from the medial terminal nucleus of the accessory optic system to lobule IX of the cerebellar cortex in the tree shrew (Tupaia glis) , 1985, Neuroscience Letters.

[19]  R. L. Boord,et al.  Connections of the lobus inferior hypothalami of the clearnose skate Raja eglanteria (chondrichthyes) , 1985, The Journal of comparative neurology.

[20]  Paul Dh The cerebellum of fishes: a comparative neurophysiological and neuroanatomical review. , 1982 .

[21]  G. Carl Huber 1865–1934 In Memoriam , 1935 .

[22]  D E Hillman,et al.  The primate cerebellar cortex: a Golgi and electron microscopic study. , 1967, Progress in brain research.

[23]  L Kruger,et al.  Quantitative neural and psychophysical data for cutaneous mechanoreceptor function. , 1973, Brain research.

[24]  R. Northcutt Central Auditory Pathways in Anamniotic Vertebrates , 1980 .

[25]  R. L. Boord,et al.  Structural and Functional Organization of the Lateral Line System of Sharks , 1977 .

[26]  C. Campbell,et al.  On the organization of cerebellar efferent pathways in the nurse shark (Ginglymostoma cirratum) , 1973, The Journal of comparative neurology.

[27]  P. Luiten Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). I. Retinal projections , 1981, The Journal of comparative neurology.

[28]  F. Bloom,et al.  A radioautographic study of the efferent pathways of the nucleus locus coeruleus , 1974, The Journal of comparative neurology.

[29]  T. Finger Cerebellar afferents in teleost catfish (lctaluridae) , 1978, The Journal of comparative neurology.

[30]  D. H. Paul,et al.  Projections of cerebellar Purkinje cells in the dogfish, Scyliorhinus , 1984, Neuroscience Letters.

[31]  J. Jansen,et al.  Experimental demonstration of a pontine homologue in birds , 1950 .

[32]  T. Bullock,et al.  The Sensory Functions of the Cerebellum of the Thornback Ray, Platyrhinoidis triseriata , 1982 .

[33]  W. Graf,et al.  Elasmobranch oculomotor organization: Anatomical and theoretical aspects of the phylogenetic development of vestibulo‐oculomotor connectivity , 1984, The Journal of comparative neurology.

[34]  R. Nieuwenhuys,et al.  Afferent and efferent connections of cerebellar lobe C1 of the mormyrid fish Gnathonemus petersi: An HRP study , 1986, The Journal of comparative neurology.

[35]  Wally Welker,et al.  Fractured cutaneous projections to the granule cell layer of the posterior cerebellar hemisphere of the domestic cat , 1984, The Journal of comparative neurology.

[36]  H. J. Donkelaar,et al.  Afferent connections of the cerebellum in various types of reptiles , 1982, The Journal of comparative neurology.

[37]  C. Judson Herrick,et al.  ORIGIN AND EVOLUTION OF THE CEREBELLUM , 1924 .

[38]  H. Karten,et al.  A bisynaptic retinocerebellar pathway in the turtle , 1978, Brain Research.

[39]  R. Northcutt,et al.  Guitarfish possess ipsilateral as well as contralateral retinofugal projections , 1980, Neuroscience Letters.

[40]  David Bodznick,et al.  Segregation of electro- and mechanoreceptive inputs to the elasmobranch medulla , 1980, Brain Research.

[41]  H. Karten,et al.  The accessory optic system in teleosts , 1978, Brain Research.

[42]  E. Dietrichs,et al.  An HRP study of hypothalamo‐cerebellar and cerebello‐hypothalamic connections in squirrel monkey (saimiri sciureus) , 1984, The Journal of comparative neurology.

[43]  H. Scheich,et al.  An ‘on the slide’ modification of the De Olmos-Heimer horseradish peroxidase method , 1981, Neuroscience Letters.

[44]  S. Ebbesson,et al.  Retinal projections in the lemon shark (Negaprion brevirostris). , 1972, Brain, behavior and evolution.

[45]  P. Clarke,et al.  Some visual and other connections to the cerebellum of the pigeon , 1977, The Journal of comparative neurology.

[46]  Hironobu Ito,et al.  An indirect telencephalo-cerebellar pathway and its relay nucleus in teleosts , 1982, Brain Research.

[47]  J. E. Rose,et al.  A metal-filled microelectrode. , 1953, Science.

[48]  T. Hayle,et al.  A comparative study of spinal projections to the brain (except cerebellum) in three classes of poikilothermic vertebrates , 1973, The Journal of comparative neurology.

[49]  H. Karten,et al.  A direct thalamo-cerebellar pathway in pigeon and catfish , 1976, Brain Research.

[50]  W. Smeets,et al.  The central nervous system of cartilaginous fishes: a neuro-anatomical study based on normal and experimental material , 1983 .

[51]  A. Brodal Reticulo‐cerebellar connections in the cat. An experimental study , 1953, The Journal of comparative neurology.

[52]  J. Voogd,et al.  Cerebellar afferents from motor nuclei of cranial nerves, the nucleus of the solitary tract, and nuclei coeruleus and parabrachialis in sheep, demonstrated with retrograde transport of horseradish peroxidase , 1980, Brain Research.

[53]  K. Fite,et al.  The accessory optic system of Rana pipiens: Neuroanatomical connections and intrinsic organization , 1981, The Journal of comparative neurology.

[54]  P. Witkovsky,et al.  The light microscopical structure of the mesencephalic nucleus of the fifth nerve in the selachian brain , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[55]  R. Northcutt Retinofugal pathways in fetal and adult spiny dogfish, Squalus acanthias , 1979, Brain Research.

[56]  G. M. Shambes,et al.  Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. , 1978, Brain, behavior and evolution.

[57]  J. T. Weber,et al.  The efferent projections of the pretectal complex: an autoradiographic and horseradish peroxidase analysis , 1980, Brain Research.

[58]  W. Smeets Retinofugal pathways in two chondrichthyans, the shark scyliorhinus canicula and the ray Raja clavata , 1981, The Journal of comparative neurology.

[59]  W. Smeets,et al.  Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata , 1981, The Journal of comparative neurology.

[60]  J. Büttner-Ennever,et al.  An autoradiographic study of the pathways from the pontine reticular formation involved in horizontal eye movements , 1976, Brain Research.

[61]  D. M. Koester,et al.  Primary afferent projections of the octavus nerve to the inferior reticular formation and adjacent nuclei in the elasmobranch, Rhinobatos sp. , 1984, Brain Research.

[62]  R. L. Boord,et al.  Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria , 1982, The Journal of comparative neurology.

[63]  M. Mesulam,et al.  Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. , 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[64]  R. Northcutt,et al.  Auditory centers in the elasmobranch brain stem: Deoxyglucose autoradiography and evoked potential recording , 1982, Brain Research.

[65]  C. Marsden Neurological Anatomy in Relation to Clinical Medicine (3rd Ed.) , 1982 .

[66]  C. Kappers,et al.  The comparative anatomy of the nervous system of vertebrates, including man , 1936 .