Automatic extraction of causal knowledge from natural language texts

This thesis studies the automatic recognition of implicit causal relations between clauses. Previous work, although more accurate than a random baseline, does not achieve sufficient accuracy for practical use. First we show, using annotation experiments, that recognising implicit causation is a subjective task, in spite of its association with several observable features. We then propose an evaluation protocol that takes the subjectivity of the task into account. Previous linguistics work uses the notion of world knowledge. We show that the most likely feature for representing this knowledge -verb pairs- is not predictive of causation in practice. We then show that the current state of the art is not sufficient to allow us to represent nor to acquire the world knowledge that is necessary for this task. We conclude that the field cannot make important progress without first solving the problem of abstract eventuality representation and clustering.

[1]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[2]  D. Marcu,et al.  Experiments in Constructing a Corpus of Discourse Trees : Problems , Annotation Choices , Issues , 1999 .

[3]  Jacques Moeschler Causality, lexicon, and discourse meaning , 2003 .

[4]  Daniel Gildea,et al.  The Proposition Bank: An Annotated Corpus of Semantic Roles , 2005, CL.

[5]  Jacques Moeschler Le modèle des inférences directionnelles , 2000 .

[6]  Alex Lascarides,et al.  Edinburgh Research Explorer Using automatically labelled examples to classify rhetorical relations: an assessment , 2022 .

[7]  Ani Nenkova,et al.  Using entity features to classify implicit discourse relations , 2010, SIGDIAL Conference.

[8]  Mehwish Riaz,et al.  Another Look at Causality: Discovering Scenario-Specific Contingency Relationships with No Supervision , 2010, 2010 IEEE Fourth International Conference on Semantic Computing.

[9]  Roxana Gîrju,et al.  Automatic Detection of Causal Relations for Question Answering , 2003, ACL 2003.

[10]  Alex Lascarides,et al.  Temporal interpretation, discourse relations and commonsense entailment , 1993, The Language of Time - A Reader.

[11]  Owen Rambow,et al.  Building and Refining Rhetorical-Semantic Relation Models , 2007, HLT-NAACL.

[12]  George Kingsley Zipf,et al.  The Psychobiology of Language , 2022 .

[13]  Alice G. B. ter Meulen,et al.  Representing Time in Natural Language: The Dynamic Interpretation of Tense and Aspect , 1995 .

[14]  Dan I. Moldovan,et al.  Mining Answers for Causation Questions , 2002 .

[15]  Takashi Inui Creating an Annotated Corpus for the Analysis of Causal Relations , 2005 .

[16]  William C. Mann,et al.  Rhetorical Structure Theory: Toward a functional theory of text organization , 1988 .

[17]  Neil R. Smalheiser,et al.  Artificial Intelligence An interactive system for finding complementary literatures : a stimulus to scientific discovery , 1995 .

[18]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[19]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[20]  Dennis Reidsma,et al.  Exploiting ‘Subjective’ Annotations , 2008, COLING 2008.

[21]  Jian Su,et al.  Kernel Based Discourse Relation Recognition with Temporal Ordering Information , 2010, ACL.

[22]  W. A. Scott,et al.  Reliability of Content Analysis ; The Case of Nominal Scale Cording , 1955 .

[23]  Regina Barzilay,et al.  Extracting Paraphrases from a Parallel Corpus , 2001, ACL.

[24]  Roxana Girju,et al.  Using a Bigram Event Model to Predict Causal Potential , 2009, CICLing.

[25]  Jürgen Bohnemeyer,et al.  Time Relations in Discourse. Evidence from a comparative approach to Yukatek Maya , 1998 .

[26]  Syin Chan,et al.  Extracting Causal Knowledge from a Medical Database Using Graphical Patterns , 2000, ACL.

[27]  Jean Véronis,et al.  A study of polysemy judgements and inter-annotator agreement , 1999 .

[28]  Jean Carletta,et al.  Assessing Agreement on Classification Tasks: The Kappa Statistic , 1996, CL.

[29]  T. Penelhum A Treatise of Human Nature (review) , 2000 .

[30]  Leo G. M. Noordman,et al.  Coherence relations in a cognitive theory of discourse representation , 1993 .

[31]  Ron Artstein,et al.  Survey Article: Inter-Coder Agreement for Computational Linguistics , 2008, CL.

[32]  R. Carston Conjunction, explanation and relevance , 1993 .

[33]  Isaac Newton,et al.  L'ordre temporal est-il naturel? Narration, causalité et temps verbaux , 1996 .

[34]  Louis de Saussure,et al.  Les « règles conceptuelles » en question , 2000 .

[35]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[36]  Alex Lascarides,et al.  Logics of Conversation , 2005, Studies in natural language processing.

[37]  Leo G. M. Noordman,et al.  Toward a taxonomy of coherence relations , 1992 .

[38]  Ani Nenkova,et al.  Automatic sense prediction for implicit discourse relations in text , 2009, ACL.

[39]  Deirdre Wilson,et al.  Pragmatics and time , 1998 .

[40]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[41]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[42]  Kenneth Ward Church,et al.  Coping with Syntactic Ambiguity or How to Put the Block in the Box on the Table , 1982, CL.

[43]  Daniel Marcu,et al.  An Unsupervised Approach to Recognizing Discourse Relations , 2002, ACL.

[44]  Rashmi Prasad,et al.  The Penn Discourse Treebank , 2004, LREC.

[45]  Bernice W. Polemis Nonparametric Statistics for the Behavioral Sciences , 1959 .

[46]  Chaveevan Pechsiri,et al.  Mining Causality Knowledge from Textual Data , 2006, Artificial Intelligence and Applications.

[47]  Yann Mathet,et al.  ANNODIS: une approche outillée de l’annotation de structures discursives , 2009, JEPTALNRECITAL.

[48]  Danushka Bollegala,et al.  A Semi-Supervised Approach to Improve Classification of Infrequent Discourse Relations Using Feature Vector Extension , 2010, EMNLP.

[49]  Beth Levin,et al.  English Verb Classes and Alternations: A Preliminary Investigation , 1993 .

[50]  Leonard Talmy,et al.  Force Dynamics in Language and Cognition , 1987, Cogn. Sci..

[51]  Jacques Moeschler Discours causal, chaîne causale et argumentation , 2007 .

[52]  Mitchell P. Marcus,et al.  OntoNotes: The 90% Solution , 2006, NAACL.

[53]  A. Avramides Studies in the Way of Words , 1992 .

[54]  Livio Robaldo,et al.  The Penn Discourse Treebank 2.0 Annotation Manual , 2007 .

[55]  G. Meade Building a Discourse-Tagged Corpus in the Framework of Rhetorical Structure Theory , 2001 .

[56]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[57]  Deirdre Wilson,et al.  Relevance theory: A tutorial , 2002 .

[58]  Jacques Moeschler L'expression de la causalité en français , 2003 .

[59]  Jian Su,et al.  Predicting Discourse Connectives for Implicit Discourse Relation Recognition , 2010, COLING.

[60]  Janyce Wiebe,et al.  Development and Use of a Gold-Standard Data Set for Subjectivity Classifications , 1999, ACL.

[61]  Alex Lascarides,et al.  Exploiting Linguistic Cues to Classify Rhetorical Relations , 2005 .

[62]  R. Schiffer Psychobiology of Language , 1986 .

[63]  Katrin Erk,et al.  The SALSA Corpus: a German Corpus Resource for Lexical Semantics , 2006, LREC.

[64]  Jacques Moeschler Causal, inferential and temporal connectives: why "parce que" is the only causal connective in french , 2011 .

[65]  Martha Palmer,et al.  The English all-words task , 2004, SENSEVAL@ACL.

[66]  Robyn Carston,et al.  Thoughts and Utterances: The Pragmatics of Explicit Communication , 2002 .

[67]  D. Sperber,et al.  Relevance: Communication and Cognition , 1989 .