Statistical analysis of electrical breakdown time delay distributions in neon tube at 13.3 mbar

Results of the statistical analysis of the electrical breakdown time delay for a neon-filled tube at 13.3 mbar are presented in this paper. Experimental distributions of the breakdown time delay were established on the basis of 1000 successive and independent measurements, deviating from usual exponential distribution. Breakdown time delay distributions are numerically generated from the composition of two parameters, which correspond to the random variables of an exponential distribution and of a Gaussian distribution. Theoretical breakdown time-delay distribution is obtained from the convolution of the exponential and Gaussian distributions. The numerically generated and theoretical breakdown time delay distributions show good correspondence with the distributions of experimental data.

[1]  M. Radović,et al.  Investigation of the electrical breakdown mechanism in neon at 13.3 mbar pressure using the time delay method , 2003 .

[2]  M. Favre,et al.  Further statistical studies of ionization growth and breakdown formation mechanisms in the final breakdown phase of a transient hollow cathode discharge , 2002 .

[3]  M. Pejovic,et al.  Electrical breakdown in low pressure gases , 2002 .

[4]  M. Radović,et al.  Statistical analysis of the dynamic voltage electrical breakdown in nitrogen , 2001 .

[5]  M. Radović,et al.  On the complex structure of the breakdown time-delay distribution in a neon-filled diode at 4 mbar pressure , 1998 .

[6]  P. Osmokrovic,et al.  Mechanism of electrical breakdown left of Paschen minimum , 1994 .

[7]  P. Osmokrovic,et al.  Mechanism of electrical breakdown of gases at very low pressure and interelectrode gap values , 1993 .

[8]  D. A. Bošan,et al.  Long formative time lags in nitrogen below the Paschen minimum , 1987 .

[9]  M. Pejovic,et al.  Laue distribution of large values of time delay of electrical breakdown in nitrogen , 1983 .

[10]  S. J. Levinson,et al.  Investigation of the Statistical and Formative Time Lags Associated with the Breakdown of a Gas in a Gap at High Overvoltage , 1982, IEEE Transactions on Plasma Science.

[11]  M. Pejovic,et al.  Distribution of time delay of electrical breakdown in nitrogen , 1982 .

[12]  J. Swift,et al.  Determination of cathode quantum efficiencies using statistical time lag measurements , 1980 .

[13]  H. C. Miller Paschen Curve in Nitrogen , 1963 .

[14]  R. Wijsman Breakdown Probability of a Low Pressure Gas Discharge , 1949 .

[15]  M. Pejovic,et al.  Analysis of mechanisms which lead to electrical breakdown in argon using the time delay method , 2002 .

[16]  K. Ramachandran,et al.  Mathematical Statistics with Applications. , 1992 .

[17]  Leopold Schmetterer,et al.  Introduction to Mathematical Statistics , 1975 .

[18]  Gary E. Meek Mathematical statistics with applications , 1973 .

[19]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[20]  L. Loeb,et al.  Statistical Factors in Spark Discharge Mechanisms , 1948 .

[21]  K. Zuber Über die Verzögerungszeit bei der Funkenentladung , 1925 .

[22]  M. Laue,et al.  Bemerkung zu K. Zubers Messung der Verzögerungszeiten bei der Funkenentladung , 1925 .