Non-innocent behaviour in mononuclear and polynuclear complexes: consequences for redox and electronic spectroscopic properties

This article reviews recent work in the area of non-innocent behaviour in polynuclear metal complexes. Non-innocence, which occurs when metal-based and ligand-based redox orbitals are similar in energy, has been known since the first dithiolene complexes of the Ni triad. Our recent work in this field is with complexes of two distinct types: polynuclear complexes of Ru(II) with dioxolene-type bridging ligands; and dinuclear complexes based on tris(pyrazolyl)borato-Mo(V) or -Mo(I) units linked by bis-phenolate or bis-pyridyl bridging ligands. Detailed redox and UV/Vis/NIR spectroelectrochemical studies on these complexes have been carried out. An important point which emerges is that non-innocent behaviour in dinuclear complexes is an essential prerequisite for strong metal–metal electronic coupling across extended bridging ligands. Many of the complexes studied show intense charge-transfer transitions in the near-IR region of the spectrum, and the use of these in prototypical optical devices is briefly discussed.

[1]  D. Richardson,et al.  Mixed-valence molecules: Electronic delocalization and stabilization , 1984 .

[2]  G. Schrauzer,et al.  Reaction of Diphenylacetylene with Nickel Sulfides , 1962 .

[3]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[4]  S. James,et al.  Long-Range Electronic Coupling in Bis(cyclometalated) Ruthenium Complexes , 1998 .

[5]  S. Goswami,et al.  Structure of blue-violet OsX2L2 and its reactions with bidentate ligands (Dz-): spectra and electrochemistry of OsDL2(2-z)+[X = Cl, Br; L = 2-(m-tolylazo)pyridine; z = 0-2] , 1984 .

[6]  A. Lever,et al.  Comparison of o-benzoquinonediimine with bipyridine and bipyrazine in electronic coupling to ruthenium(II), as a function of spectator ligand , 2000 .

[7]  Masayuki Okuno,et al.  PLC type compact variable optical attenuator for photonic transport network , 1998 .

[8]  M. Ward,et al.  Roles of Bridging Ligand Topology and Conformation in Controlling Exchange Interactions between Paramagnetic Molybdenum Fragments in Dinuclear and Trinuclear Complexes. , 1997, Inorganic chemistry.

[9]  I. White,et al.  A variable optical attenuator operating in the near-infrared region based on an electrochromic molybdenum complex , 2000 .

[10]  H. Gray,et al.  A Spin-Free Square Planar Cobaltous Complex , 1962 .

[11]  A. Lever,et al.  TRENDS IN METAL-LIGAND ORBITAL MIXING IN GENERIC SERIES OF RUTHENIUM N-DONOR LIGAND COMPLEXES : EFFECT ON ELECTRONIC SPECTRA AND REDOX PROPERTIES , 1998 .

[12]  G. Dolcetti,et al.  Manganese(III)-catecholate coordination in the bis(tetrabromocatecholato)(triphenylphosphine oxide)manganese(III) anionic dimer , 1986 .

[13]  A. Lever,et al.  Bis(dioxolene)bis(pyridine)ruthenium redox series , 1991 .

[14]  Roger J. Mortimer,et al.  Organic electrochromic materials , 1999 .

[15]  C. Pierpont,et al.  Nickel complexes containing catecholate, benzoquinone and semiquinone radical ligands , 1997 .

[16]  N. Edelstein,et al.  E.s.r. Studies of Four-Coördinate Complexes of Nickel, Palladium and Platinum Related by Electron Transfer Reactions , 1963 .

[17]  A. Lever,et al.  First-Principles Interpretation of Ligand Electrochemical (EL(L)) Parameters. Factorization of the .sigma. and .pi. Donor and .pi. Acceptor Capabilities of Ligands , 1995 .

[18]  M. Haga,et al.  Comparative studies on charge distribution for the ruthenium and osmium quinone complexes [M(bpy)2(quinone)]n (M = Ru, Os; n = 0, +1, +2) , 1990 .

[19]  K. Wieghardt,et al.  Electronic structure of bis(o-iminobenzosemiquinonato)metal complexes (Cu, Ni, Pd). The art of establishing physical oxidation states in transition-metal complexes containing radical ligands. , 2001, Journal of the American Chemical Society.

[20]  M. Ward,et al.  Effects of Systematic Variation in Bridging Ligand Structure on the Electrochemical and Magnetic Properties of a Series of Dinuclear Molybdenum Complexes. , 1996, Inorganic chemistry.

[21]  David R. Rosseinsky,et al.  Electrochromic Systems and the Prospects for Devices , 2001 .

[22]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[23]  M. Ward,et al.  Synthesis, electrochemistry, UV/VIS/NIR spectroelectrochemistry and ZINDO calculations of a dinuclear ruthenium complex of the tetraoxolene bridging ligand 9-phenyl-2,3,7-trihydroxy-6-fluorone , 2000 .

[24]  L. Yellowlees,et al.  Ligand-ligand inter-valence charge-transfer absorption in reduced ruthenium(II) bipyridine complexes , 1982 .

[25]  Hiroyuki Nakazumi,et al.  Near-infrared absorbing dyes , 1992 .

[26]  E. König,et al.  Electronic spectra of tris(2,2′-bipyridyl) complexes—I , 1970 .

[27]  A. Lever,et al.  Bis(2,2‘-bipyridine)(1,2-diimino-9,10-anthraquinone)ruthenium(II) Derivatives: A ZINDO Analysis of a Redox Series Involving Coupled Proton and Electron Transfers , 1999 .

[28]  M. Ward,et al.  Dinuclear Oxomolybdenum(V) Complexes Showing Strong Interactions across Diphenol Bridging Ligands: Syntheses, Structures, Electrochemical Properties, and EPR Spectroscopic Properties , 1996 .

[29]  Georg Pawlowski,et al.  Materials for Optical Data Storage , 1989 .

[30]  L. Warren Synthesis of [M'-N4] and [M'-N6] complexes based on o-benzoquinone diimine with cobalt, iron, and ruthenium , 1977 .

[31]  A. Lever,et al.  The ground and excited state electronic structures of ruthenium quinones and related species , 1993 .

[32]  M. Ward,et al.  DI-, TRI-, AND TETRANUCLEATING PYRIDYL LIGANDS WHICH FACILITATE MULTICENTER MAGNETIC EXCHANGE BETWEEN PARAMAGNETIC MOLYBDENUM CENTERS , 1995 .

[33]  Jim A. Thomas,et al.  MONO- AND BIMETALLIC BIPYRIDYL POLYENE COMPLEXES CONTAINING 17-ELECTRON MOLYBDENUM MONONITROSYL CENTERS : ELECTROCHEMICAL, SPECTROSCOPIC, AND MAGNETIC STUDIES , 1996 .

[34]  I. Hanazaki,et al.  Electronic Structures of Tris(2,2′-bipyridyl) Complexes of Transition Metals in Lower Oxidation States , 1971 .

[35]  C. Pierpont Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands , 2001 .

[36]  R. Zahradník,et al.  The Search for Highly Colored Organic Compounds , 1989 .

[37]  A. Lever,et al.  Catechol-quinone redox series involving bis(bipyridine)ruthenium(II) and tetrakis(pyridine)ruthenium(II) , 1986 .

[38]  C. Pierpont,et al.  Catecholate and semiquinone complexes of vanadium. Factors that direct charge distribution in metal-quinone complexes , 1986 .

[39]  K. Wieghardt,et al.  Tuning the Electronic Structure of Halidobis(o-imino-benzosemiquinonato)iron(III) Complexes. , 2001, Angewandte Chemie.

[40]  C. R. Giles,et al.  A fiber connectorized MEMS variable optical attenuator , 1998, IEEE Photonics Technology Letters.

[41]  V. Kondratiev,et al.  AN INVESTIGATION OF SUPEREXCHANGE IN DINUCLEAR MIXED-VALENCE RUTHENIUM COMPLEXES , 1998 .

[42]  T. Meyer,et al.  Medium and Distance Effects in Optical and Thermal Electron Transfer , 1980 .

[43]  A. Lever,et al.  Tetraammineruthenium(II) and -ruthenium(III) Complexes of o-Benzoquinone Diimine and Their Redox Series. , 1997, Inorganic chemistry.

[44]  K. Nakamoto,et al.  Infrared studies of coordination compounds containing low-oxidation-state metals. I. Tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes , 1972 .

[45]  A. Lever,et al.  Ruthenium Complexes of Quinone Related Ligands: A Study of the Electrochemical Properties of 2-Aminothiophenolatobis(2,2'-Bipyridine)Ruthenium(II). , 1999, Inorganic chemistry.

[46]  M. Ward,et al.  Comparison of metal-metal electronic interactions in an isomeric pair of dinuclear ruthenium complexes with different bridging pathways: effective hole transfer through a bis-phenolate bridge. , 2001, Inorganic Chemistry.

[47]  O. Jung,et al.  Bistability and Molecular Switching for Semiquinone and Catechol Complexes of Cobalt. Studies on Redox Isomerism for the Bis(pyridine) Ether Series Co(py2X)(3,6-DBQ)2, X = O, S, Se, and Te , 1997 .

[48]  A. Lever,et al.  Synthesis and spectroscopic characterization of bis[bis(bipyridine)ruthenium(II)] 3,3',4,4'-tetraimino-3,3',4,4'-tetrahydrobiphenyl and its redox products , 1990 .