A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance

Abstract. The Radiation Explorer in the Far Infrared – Prototype for Applications and Development (REFIR-PAD) is a Fourier transform spectroradiometer that has been designed to operate from both stratospheric balloon platforms and the ground. It has been successfully deployed in a stratospheric balloon flight and several ground-based campaigns from high-altitude sites, including the current installation at the Italian–French Concordia Antarctic station. The instrument is capable of operating autonomously with only a limited need of remote control and monitoring and provides a multiyear dataset of spectrally resolved atmospheric downwelling radiances, measured in the 100–1500 cm−1 spectral range with 0.4 cm−1 resolution and a radiometric uncertainty of better than 0.85 mW(m2srcm-1)-1.

[1]  B Carli,et al.  Effect of beam-splitter emission in Fourier-transform emission spectroscopy. , 1999, Applied optics.

[2]  Sheng-Cai Shi,et al.  Terahertz and far-infrared windows opened at Dome A in Antarctica , 2016, Nature Astronomy.

[3]  C. Schär,et al.  The global energy balance from a surface perspective , 2013, Climate Dynamics.

[4]  Luca Palchetti,et al.  Feasibility of the spaceborne radiation explorer in the far infrared (REFIR) , 2002, SPIE Optics + Photonics.

[5]  Robert S. Stone,et al.  Radiometric validation of the Atmospheric Infrared Sounder over the Antarctic Plateau , 2006 .

[6]  J. Drummond,et al.  Infrared measurements in the Arctic using two Atmospheric Emitted Radiance Interferometers , 2012 .

[7]  Luca Palchetti,et al.  Breadboard of a Fourier-transform spectrometer for the radiation explorer in the far infrared atmospheric mission. , 2005, Applied optics.

[8]  V. Cuomo,et al.  Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band , 2008 .

[9]  L Palchetti,et al.  Spectral noise due to sampling errors in Fourier-transform spectroscopy. , 2001, Applied optics.

[10]  L. Palchetti,et al.  Design and mathematical modelling of the space-borne far-infrared Fourier transform spectrometer for REFIR experiment , 1999 .

[11]  S. Tett,et al.  Using IASI to simulate the total spectrum of outgoing long-wave radiances , 2015 .

[12]  Piera Raspollini,et al.  Characterisation of instrumental line shape distortions due to path difference dependent phase errors in a Fourier transform spectrometer , 2000 .

[13]  T. Andrews,et al.  An update on Earth's energy balance in light of the latest global observations , 2012 .

[14]  Luca Palchetti,et al.  Far-infrared spectrally resolved broadband emission of the atmosphere from Morello and Gomito mountains near Florence , 2007, SPIE Remote Sensing.

[15]  Luca Palchetti,et al.  Technical Note: REFIR-PAD level 1 data analysis and performance characterization , 2008 .

[16]  William L. Smith,et al.  The Retrieval of Planetary Boundary Layer Structure Using Ground-Based Infrared Spectral Radiance Measurements , 1999 .

[17]  D. H. Martin,et al.  Polarised interferometric spectrometry for the millimetre and submillimetre spectrum , 1970 .

[18]  Spectral characterization of the surface longwave radiation over the East Antarctic Plateau , 2017 .

[19]  P. J. Gero,et al.  Long-Term Trends in Downwelling Spectral Infrared Radiance over the U.S. Southern Great Plains , 2011 .

[20]  Shepard A. Clough,et al.  The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance , 2004 .

[21]  Luca Palchetti,et al.  The Far‐infrared Earth , 2008 .

[22]  P. E. Morris,et al.  Optimized forward model and retrieval scheme for MIPAS near-real-time data processing. , 2000, Applied optics.

[23]  S. Newman,et al.  Recent advances in measurement of the water vapour continuum in the far-infrared spectral region , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[25]  John E. Harries,et al.  Water vapour and greenhouse trapping: The role of far infrared absorption , 1995 .

[26]  P. Di Girolamo,et al.  Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy : An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data , 2008 .

[27]  G Bianchini,et al.  Flight qualification of a diode laser for path difference determination of a high-resolution fourier transform spectrometer. , 2000, Applied optics.

[28]  F. Castagnoli,et al.  Design and characterisation of black-body sources for infrared wide-band Fourier transform spectroscopy , 2008 .

[29]  Stephen G. Warren,et al.  Spectral and Broadband Longwave Downwelling Radiative Fluxes, Cloud Radiative Forcing, and Fractional Cloud Cover over the South Pole , 2005 .

[30]  P. D. Girolamo,et al.  Water vapor sounding with the far infrared REFIR-PAD spectroradiometer from a high-altitude ground-based station during the ECOWAR campaign , 2011 .

[31]  John W. V. Storey,et al.  First Measurements of the Infrared Sky Brightness at Dome C, Antarctica , 2005 .

[32]  R. Sussmann,et al.  The Zugspitze radiative closure experiment for quantifying water vaporabsorption over the terrestrial and solar infrared –Part 3: Quantification of the mid- and near-infrared water vapor continuumin the 2500 to 7800 cm −1 spectral range under atmospheric conditions , 2016 .

[33]  H. B. Howell,et al.  Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder. , 1988, Applied optics.

[34]  Luca Palchetti,et al.  REFIR/BB initial observations in the water vapour rotational band: Results from a field campaign , 2007 .

[35]  V. Cuomo,et al.  Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm(-1). , 2008, Optics express.

[36]  L. Palchetti,et al.  Vectorial combination of signals in Fourier transform spectroscopy , 2009 .

[37]  Qiang Fu,et al.  A strict test in climate modeling with spectrally resolved radiances: GCM simulation versus AIRS observations , 2007 .

[38]  George A. Vanasse,et al.  VII Fourier Spectroscopy , 1967 .

[39]  John E. Harries,et al.  The impact of far i.r. absorption on clear sky greenhouse forcing: sensitivity studies at high spectral resolution , 1998 .

[40]  M. Mlynczak,et al.  Observations of downwelling far-infrared emission at Table Mountain California made by the FIRST instrument , 2016 .

[41]  U. Cortesi,et al.  Measurement of the water vapour vertical profile and of the Earth's outgoing far infrared flux , 2007 .

[42]  Yi Huang A Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation , 2013 .

[43]  Luca Palchetti,et al.  Ground‐based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions , 2012 .

[44]  B. McArthur,et al.  Baseline surface radiation network (BSRN/WCRP) New precision radiometry for climate research , 1998 .

[45]  A. Boscaleri,et al.  Infrared balloon experiment: improved instrumental configuration and assessment of instrument performance. , 2006, Applied optics.

[46]  Luca Palchetti,et al.  Far-Infrared Radiative Properties of Water Vapor and Clouds in Antarctica , 2015 .

[47]  Enzo Pascale,et al.  SAFIRE-A (spectroscopy of the atmosphere by far-infrared emission-airborne): optimized instrument configuration and new assessment of improved performance. , 2004, Applied optics.

[48]  D. F. Young,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation , 2003 .

[49]  Luca Palchetti,et al.  Frictionless mirror drive for intermediate resolution infrared Fourier transform spectroscopy , 2006 .

[50]  Luca Palchetti,et al.  Technical note: First spectral measurement of the Earth's upwelling emission using an uncooled wideband Fourier transform spectrometer , 2006 .

[51]  Luca Palchetti,et al.  Test of far infrared atmospheric spectroscopy using wide-band balloon borne measurements of the upwelling radiance , 2008 .

[52]  David R. Doelling,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation , 2005 .

[53]  B Carli,et al.  Design of an efficient broadband far-infrared Fourier-transform spectrometer. , 1999, Applied optics.

[54]  A. Ipe,et al.  Outgoing longwave flux estimation: improvement of angular modelling using spectral information , 2003 .