Adaptive Critics and the Basal Ganglia

Part 1 Fundamentals: information processing in modular circuits linking basal ganglia and cerebral cortex, James C. Houk context-dependent activity in primate striatum reflecting past and future behavioural events, Wolfram Schultz et al the contribution of cortical neurons to the firing pattern of striatal spiny neurons, Charles J. Wilson elements of the intrinsic organization and information processing in the neostriatum, Philip M. Groves et al. Part 2 Motor functions and working memories: adaptive neural networks in the basal ganglia, Ann M. Graybiel and Minoru Kimura macro-organization of the circuits connecting the basal ganglia with the cortical motor areas, Peter L. Strick et al toward a circuit model of working memory and the guidance of voluntary motor action, Patricia S. Goldman-Rakic modelling the roles of basal ganglia in timing and sequencing saccadic eye movements, Michael A. Arbib and Peter Dominey a state-space striatal model, Christopher I. Connolly and J. Brian Burns. Part 3 Reward mechanisms: cellular models of reinforcement, Jeff Wickens and Rolf Kotter adaptive critics and the basal ganglia, Andrew G. Barto reward-related signals carried by dopamine neurons, Wolfram Schultz et al a model of how the basal ganglia generate and use neural signals that predict reinforcement, James C. Houk et al. Part 4 Cognitive and memory operations: contribution of the basal ganglia to skill learning and working memory in humans, John Gabrieli memory limits in sensorimotor tasks, Dana H, Ballard et al neostriatal circuitry as a scalar memory - modelling and ensemble neuron recording, Donald J. Woodward et al sensorimotor selection and the basal ganglia - a neural network model, Stephen Jackson and George Houghton.

[1]  J. Stevens,et al.  Animal Intelligence , 1883, Nature.

[2]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[3]  A. H. Klopf,et al.  Brain Function and Adaptive Systems: A Heterostatic Theory , 1972 .

[4]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[5]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[6]  Wg Lehnert,et al.  THE HEDONISTIC NEURON - A THEORY OF MEMORY, LEARNING, AND INTELLIGENCE - KLOPF,AH , 1983 .

[7]  John S. Edwards,et al.  The Hedonistic Neuron: A Theory of Memory, Learning and Intelligence , 1983 .

[8]  Richard S. Sutton,et al.  Temporal credit assignment in reinforcement learning , 1984 .

[9]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[10]  Paul J. Werbos,et al.  Building and Understanding Adaptive Systems: A Statistical/Numerical Approach to Factory Automation and Brain Research , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  A. Barto,et al.  Learning and Sequential Decision Making , 1989 .

[12]  Richard S. Sutton,et al.  Time-Derivative Models of Pavlovian Reinforcement , 1990 .

[13]  Donald A. Sofge,et al.  Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches , 1992 .

[14]  Joel L. Davis,et al.  A Model of How the Basal Ganglia Generate and Use Neural Signals That Predict Reinforcement , 1994 .

[15]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..