Evaluation of the Fatemi-Socie damage parameter for the fatigue life calculation with application of the Chaboche plasticity model

[1]  Shun-Peng Zhu,et al.  Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials , 2018, International Journal of Fatigue.

[2]  Aleksander Karolczuk,et al.  A correction in the algorithm of fatigue life calculation based on the critical plane approach , 2016 .

[3]  Ł. Pejkowski,et al.  Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the stress-strain models , 2017 .

[4]  José Alexander Araújo,et al.  Prismatic hull: A new measure of shear stress amplitude in multiaxial high cycle fatigue , 2009 .

[5]  Dariusz Skibicki,et al.  Phenomena and Computational Models of Non-Proportional Fatigue of Materials , 2014 .

[6]  Ł. Pejkowski On the material's sensitivity to non-proportionality of fatigue loading , 2017 .

[7]  Aleksander Karolczuk Analysis of revised fatigue life calculation algorithm under proportional and non-proportional loading with constant amplitude , 2016 .

[8]  K. Kluger,et al.  Modification of the algorithm for calculating fatigue life for the criteria based on the concept of the critical plane , 2018 .

[9]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .

[10]  K. S. Kim,et al.  Shear strain based multiaxial fatigue parameters applied to variable amplitude loading , 1999 .

[11]  Y. Pi,et al.  Multiaxial low‐cycle fatigue life evaluation under different non‐proportional loading paths , 2018 .

[12]  Ali Fatemi,et al.  Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels , 2009 .

[13]  Masaya Kameoka,et al.  A new model for describing a stable cyclic stress-strain relationship under non-proportional loading based on activation state of slip systems , 2004 .

[14]  P. Reed,et al.  Low cycle fatigue life prediction in shot-peened components of different geometries – Part II: Life prediction , 2017 .

[15]  Andrea Carpinteri,et al.  On the use of the Prismatic Hull method in a critical plane-based multiaxial fatigue criterion , 2014 .

[16]  Ali Fatemi,et al.  Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects , 2004 .

[17]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[18]  A. Fatemi,et al.  Multiaxial cyclic deformation and non-proportional hardening employing discriminating load paths , 2010 .

[19]  F. Corea,et al.  Short cracks growth in low cycle fatigue under multiaxial in-phase loading , 2018 .

[20]  Nicholas R. Gates,et al.  On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis , 2017 .

[21]  Gary T. Fry,et al.  Fatigue analysis of railway wheel using a multiaxial strain-based critical-plane index , 2018 .

[22]  Shun-Peng Zhu,et al.  Fatigue reliability assessment of turbine discs under multi‐source uncertainties , 2018 .

[23]  Jafar Albinmousa,et al.  A method for assessing critical plane‐based multiaxial fatigue damage models , 2018 .

[24]  Andrea Carpinteri,et al.  A review of multiaxial fatigue criteria for random variable amplitude loads , 2017 .

[25]  Ali Fatemi,et al.  Multiaxial Fatigue Life Predictions Under the Influence of Mean-Stresses , 1988 .

[26]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[27]  Andrea Carpinteri,et al.  Fatigue assessment of metallic components under uniaxial and multiaxial variable amplitude loading , 2018 .

[28]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[29]  Andrea Carpinteri,et al.  Expected position of the fatigue fracture plane by using the weighted mean principal Euler angles , 2002 .

[30]  Andrea Carpinteri,et al.  Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts , 2016 .

[31]  Mácha,et al.  Energy criteria of multiaxial fatigue failure , 1999 .

[32]  Ali Fatemi,et al.  Multiaxial variable amplitude fatigue life analysis using the critical plane approach, Part II: Notched specimen experiments and life estimations , 2017 .

[33]  A. Karolczuk,et al.  Fatigue fracture planes and expected principal stress directions under biaxial variable amplitude loading , 2005 .

[34]  T. Lagoda,et al.  A new algorithm for estimating fatigue life under mean value of stress , 2017 .

[35]  Filippo Berto,et al.  Three-dimensional effects at the tip of rounded notches subjected to mode-I loading under cyclic plasticity , 2015 .

[36]  J. Chaboche,et al.  On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept , 1983 .

[37]  K. Vecchio,et al.  The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery , 2001 .

[38]  Optimization Toolbox , 2001, Optimizations and Programming.

[39]  S. Yu,et al.  Experimental and numerical investigation on crack initiation of fretting fatigue of dovetail , 2018 .

[40]  Ali Fatemi,et al.  Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects , 2010 .

[41]  Luca Susmel A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems , 2010 .

[42]  Filippo Berto,et al.  Cyclic plasticity in three-dimensional notched components under in-phase multiaxial loading at R = −1 , 2016 .

[43]  Andrea Carpinteri,et al.  An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C‐S (Carpinteri‐Spagnoli) criterion , 2014 .

[44]  Andrea Carpinteri,et al.  Lifetime estimation in the low/medium-cycle regime using the Carpinteri–Spagnoli multiaxial fatigue criterion , 2014 .