Densest k-Subgraph Approximation on Intersection Graphs

We study approximation solutions for the densest k-subgraph problem (DS-k) on several classes of intersection graphs. We adopt the concept of σ-quasi elimination orders, introduced by Akcoglu et al. [1], generalizing the perfect elimination orders for chordal graphs, and develop a simple O(σ)-approximation technique for graphs admitting such a vertex order. This concept allows us to derive constant factor approximation algorithms for DS-k on many intersection graph classes, such as chordal graphs, circular-arc graphs, claw-free graphs, line graphs of l-hypergraphs, disk graphs, and the intersection graphs of fat geometric objects. We also present a PTAS for DS-k on unit disk graphs using the shifting technique.

[1]  Andrzej Lingas,et al.  Algorithm Theory — SWAT'96 , 1996, Lecture Notes in Computer Science.

[2]  René Peeters,et al.  The maximum edge biclique problem is NP-complete , 2003, Discret. Appl. Math..

[3]  Allan Borodin,et al.  Sequential Elimination Graphs ⋆ , 2009 .

[4]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[5]  Allan Borodin,et al.  Elimination Graphs , 2009, ICALP.

[6]  Subhash Khot Ruling Out PTAS for Graph Min-Bisection, Densest Subgraph and Bipartite Clique , 2004, FOCS.

[7]  Karhan Akcoglu,et al.  Opportunity Cost Algorithms for Combinatorial Auctions , 2000, ArXiv.

[8]  Jiawei Zhang,et al.  Approximation of Dense-n/2-Subgraph and the Complement of Min-Bisection , 2003, J. Glob. Optim..

[9]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[10]  P. Turán On the theory of graphs , 1954 .

[11]  Aditya Bhaskara,et al.  Detecting high log-densities: an O(n¼) approximation for densest k-subgraph , 2010, STOC '10.

[12]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[13]  Samir Khuller,et al.  On Finding Dense Subgraphs , 2009, ICALP.

[14]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[15]  Frank Nielsen,et al.  Dynamic Data Structures for Fat Objects and Their Applications , 1997, WADS.

[16]  Guy Kortsarz,et al.  On choosing a dense subgraph , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[17]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[18]  U. Feige,et al.  On the Densest K-subgraph Problem , 1997 .

[19]  Zdenek Ryjácek,et al.  Claw-free graphs - A survey , 1997, Discret. Math..

[20]  Frank Harary,et al.  Graph Theory , 2016 .

[21]  Klaus Jansen,et al.  Polynomial-time approximation schemes for geometric graphs , 2001, SODA '01.

[22]  Kumar Chellapilla,et al.  Finding Dense Subgraphs with Size Bounds , 2009, WAW.

[23]  J. Mark Keil,et al.  Constant factor approximation algorithms for the densest k-subgraph problem on proper interval graphs and bipartite permutation graphs , 2010, Inf. Process. Lett..

[24]  Anand Srivastav,et al.  Finding Dense Subgraphs with Semidefinite Programming , 1998, APPROX.

[25]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[26]  Tomomi Matsui,et al.  Approximation Algorithms for Maximum Independent Set Problems and Fractional Coloring Problems on Unit Disk Graphs , 1998, JCDCG.

[27]  U. Feige,et al.  On the densest k-subgraph problems , 1997 .

[28]  Ioannis Milis,et al.  The densest k-subgraph problem on clique graphs , 2007, J. Comb. Optim..

[29]  Marek Karpinski,et al.  Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems , 1999, J. Comput. Syst. Sci..

[30]  Ioannis Milis,et al.  A constant approximation algorithm for the densest k , 2008, Inf. Process. Lett..

[31]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[32]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[33]  Akcoglu Karhan,et al.  Opportunity Cost Algorithms for Combinatorial Auctions , 2000 .

[34]  Hisao Tamaki,et al.  Greedily Finding a Dense Subgraph , 2000, J. Algorithms.

[35]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[36]  David G. Kirkpatrick,et al.  Algorithmic aspects of constrained unit disk graphs , 1996 .

[37]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[38]  Klaus Jansen,et al.  Approximation Algorithms for Combinatorial Optimization , 2000 .