Approximating $(k,\ell)$-Median Clustering for Polygonal Curves
暂无分享,去创建一个
[1] Sudipto Guha,et al. Clustering Data Streams , 2000, FOCS.
[2] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[3] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[4] Anthony Wirth,et al. Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.
[5] S. C. Johnson. Hierarchical clustering schemes , 1967, Psychometrika.
[6] Michael Langberg,et al. A unified framework for approximating and clustering data , 2011, STOC.
[7] Alexander Munteanu,et al. Random projections and sampling algorithms for clustering of high-dimensional polygonal curves , 2019, NeurIPS.
[8] Luis Angel García-Escudero,et al. A Proposal for Robust Curve Clustering , 2005, J. Classif..
[9] Joachim Gudmundsson,et al. Approximating $(k,\ell)$-center clustering for curves , 2018 .
[10] Kevin Buchin,et al. Computing the Fréchet distance between simple polygons , 2008, Comput. Geom..
[11] Ioannis Psarros,et al. The VC Dimension of Metric Balls under Fréchet and Hausdorff Distances , 2019, Discrete & Computational Geometry.
[12] Paul M. B. Vitányi,et al. Clustering by compression , 2003, IEEE Transactions on Information Theory.
[13] Kevin Buchin,et al. On the hardness of computing an average curve , 2020, SWAT.
[14] Marcel R. Ackermann,et al. Clustering for metric and non-metric distance measures , 2008, SODA '08.
[15] Jeng-Min Chiou,et al. Functional clustering and identifying substructures of longitudinal data , 2007 .
[16] M. Iri,et al. Polygonal Approximations of a Curve — Formulations and Algorithms , 1988 .
[17] Hava T. Siegelmann,et al. Support Vector Clustering , 2002, J. Mach. Learn. Res..
[18] Jian Li,et al. Epsilon-Coresets for Clustering (with Outliers) in Doubling Metrics , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
[19] Alexandr Andoni,et al. High-Dimensional Computational Geometry , 2016, Handbook of Big Data.
[20] Pierre Gançarski,et al. Summarizing a set of time series by averaging: From Steiner sequence to compact multiple alignment , 2012, Theor. Comput. Sci..
[21] Nabil H. Mustafa,et al. Near-Linear Time Approximation Algorithms for Curve Simplification , 2005, Algorithmica.
[22] Charu C. Aggarwal,et al. Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.
[23] Christian Sohler,et al. Clustering time series under the Fréchet distance , 2015, SODA.
[24] Pierre Gançarski,et al. A global averaging method for dynamic time warping, with applications to clustering , 2011, Pattern Recognit..
[25] Sariel Har-Peled,et al. Jaywalking Your Dog: Computing the Fréchet Distance with Shortcuts , 2012, SIAM J. Comput..
[26] Abhinandan Nath,et al. k-Median clustering under discrete Fréchet and Hausdorff distances , 2020, SoCG.
[27] Inderjit S. Dhillon,et al. Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..
[28] Hans-Peter Kriegel,et al. Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..