Use of phylogenetic network and its reconstruction algorithms

Evolutionary data often contains a number of different conflicting phylogenetic signals such as horizontal gene transfer, hybridization, and homoplasy. Different systems have been developed to represent the evolutionary data through a generic frame called phylogenetic network. In this paper, we briefly present prominent phylogenetic network reconstruction algorithms, such as Reticulation Network, Split Decomposition and NeighborNet. These algorithms are evaluated on two data sets. First data set represents microevolution in Jatamansi plant, whose sequences are collected from different parts of Himachal Paradesh, India. Second data represents extensive polyphyly in major plant clades for which sequences of different plants are collected from NCBI.

[1]  Hans-Jürgen Bandelt,et al.  A Relational Approach to Split Decomposition , 1993 .

[2]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[3]  H. Akaike Factor analysis and AIC , 1987 .

[4]  Pierre-Alexandre Landry,et al.  Estimation of missing distances in path-length matrices: Problems and solutions , 1996, Mathematical Hierarchies and Biology.

[5]  D. Penny,et al.  Spectral analysis of phylogenetic data , 1993 .

[6]  K. A. Brown,et al.  Ancient DNA: Using molecular biology to explore the past , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  Pierre Legendre,et al.  Biological Applications of Reticulation Analysis , 2000, J. Classif..

[8]  Terence P. Speed,et al.  Estimating the fraction of invariable codons with a capture-recapture method , 1992, Journal of Molecular Evolution.

[9]  Vladimir Makarenkov,et al.  T-REX: reconstructing and visualizing phylogenetic trees and reticulation networks , 2001, Bioinform..

[10]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[11]  Vladimir Makarenkov,et al.  Comparison of Additive Trees Using Circular Orders , 2000, J. Comput. Biol..

[12]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[13]  Walter M. Fitch,et al.  A non-sequential method for constructing trees and hierarchical classifications , 2005, Journal of Molecular Evolution.

[14]  Vladimir Makarenkov,et al.  Reconstruction of biogeographic and evolutionary networks using reticulograms. , 2002, Systematic biology.

[15]  François-Joseph Lapointe,et al.  Estimating Trees From Incomplete Distance Matrices: A Comparison of Two Methods , 2000 .

[16]  Vladimir Makarenkov,et al.  From a Phylogenetic Tree to a Reticulated Network , 2004, J. Comput. Biol..

[17]  Mike A. Steel,et al.  Dissimilarity maps and substitution models: Some new results , 1996, Mathematical Hierarchies and Biology.

[18]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[19]  J. Felsenstein Numerical Methods for Inferring Evolutionary Trees , 1982, The Quarterly Review of Biology.

[20]  A. Dress,et al.  Split decomposition: a new and useful approach to phylogenetic analysis of distance data. , 1992, Molecular phylogenetics and evolution.

[21]  Vincent Moulton,et al.  NeighborNet: An Agglomerative Method for the Construction of Planar Phylogenetic Networks , 2002, WABI.

[22]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[23]  Daniel H. Huson,et al.  SplitsTree-a program for analyzing and visualizing evolutionary data , 1997 .