Complexity reduction in context-dependent DNA substitution models
暂无分享,去创建一个
[1] H. Kishino,et al. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.
[2] W. Fitch. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .
[3] H. Ellegren,et al. A low rate of simultaneous double-nucleotide mutations in primates. , 2003, Molecular biology and evolution.
[4] Michael I. Jordan. Learning in Graphical Models , 1999, NATO ASI Series.
[5] Michael B. Eisen,et al. Phylogenetic Motif Detection by Expectation-Maximization on Evolutionary Mixtures , 2003, Pacific Symposium on Biocomputing.
[6] Elmar Nöth,et al. Interpolated markov chains for eukaryotic promoter recognition , 1999, Bioinform..
[7] H. Munro,et al. Mammalian protein metabolism , 1964 .
[8] Simon Whelan,et al. Estimating the Frequency of Events That Cause Multiple-Nucleotide Changes , 2004, Genetics.
[9] D. Haussler,et al. Using multiple alignments and phylogenetic trees to detect RNA secondary structure. , 1996, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.
[10] S. Salzberg,et al. Interpolated Markov models for eukaryotic gene finding. , 1999, Genomics.
[11] J. L. Jensen,et al. Probabilistic models of DNA sequence evolution with context dependent rates of substitution , 2000, Advances in Applied Probability.
[12] T. Jukes. CHAPTER 24 – Evolution of Protein Molecules , 1969 .
[13] S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .
[14] David Haussler,et al. Combining Phylogenetic and Hidden Markov Models in Biosequence Analysis , 2004, J. Comput. Biol..
[15] Martin A. Nowak,et al. Inferring Cellular Networks Using Probabilistic Graphical Models , 2004 .
[16] P. Green,et al. Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[17] D. Haussler,et al. Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. , 2003, Molecular biology and evolution.
[18] Michael R. Brent,et al. Using Multiple Alignments to Improve Gene Prediction , 2005, RECOMB.
[19] Alexei J Drummond,et al. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.
[20] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.
[21] N. Goldman,et al. A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.
[22] Paul T. Groth,et al. The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.
[23] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.
[24] Francesca Chiaromonte,et al. ESPERR: learning strong and weak signals in genomic sequence alignments to identify functional elements. , 2006, Genome research.
[25] N. Saitou,et al. The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.
[26] Lior Pachter,et al. Multiple-sequence functional annotation and the generalized hidden Markov phylogeny , 2004, Bioinform..
[27] R. Percudani. Restricted wobble rules for eukaryotic genomes. , 2001, Trends in genetics : TIG.
[28] Jakob Skou Pedersen,et al. Gene finding with a hidden Markov model of genome structure and evolution , 2003, Bioinform..
[29] Judea Pearl,et al. Probabilistic reasoning in intelligent systems , 1988 .
[30] Peter F. Arndt,et al. Identification and Measurement of Neigbor Dependent Nucleotide Substitution Processes , 2005, German Conference on Bioinformatics.
[31] David J. Spiegelhalter,et al. Local computations with probabilities on graphical structures and their application to expert systems , 1990 .
[32] Kenneth Lange,et al. Codon and rate variation models in molecular phylogeny. , 2002, Molecular biology and evolution.
[33] Sean R. Eddy,et al. Biological sequence analysis: Preface , 1998 .
[34] X. Jin. Factor graphs and the Sum-Product Algorithm , 2002 .
[35] P. Sharp,et al. Evidence for a high frequency of simultaneous double-nucleotide substitutions. , 2000, Science.
[36] David Heckerman,et al. A Tutorial on Learning with Bayesian Networks , 1998, Learning in Graphical Models.
[37] Tom H. Pringle,et al. The human genome browser at UCSC. , 2002, Genome research.
[38] Lior Pachter,et al. MAVID: constrained ancestral alignment of multiple sequences. , 2003, Genome research.
[39] Erik van Nimwegen,et al. PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny , 2005, PLoS Comput. Biol..
[40] Nebojsa Jojic,et al. Efficient approximations for learning phylogenetic HMM models from data , 2004, ISMB/ECCB.
[41] J. Harrow,et al. GENCODE: producing a reference annotation for ENCODE , 2006, Genome Biology.