Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties

In a previous study (Cane and Richardson, J. Geophys. Res.108(A4), SSH6-1, 2003), we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a “comprehensive” catalog of these events. In this paper, we present a revised and updated catalog of the ≈300 near-Earth ICMEs in 1996 – 2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied “magnetic clouds”, with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval.

[1]  I. Richardson,et al.  A study of solar energetic particle events of 1997–2006: Their composition and associations , 2010 .

[2]  Alan J. Lazarus,et al.  The solar wind helium abundance: Variation with wind speed and the solar cycle , 2001 .

[3]  Menghua Wang,et al.  Study of the Sea‐Viewing Wide Field‐of‐View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products , 2005 .

[4]  Ezequiel Echer,et al.  Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006) , 2008 .

[5]  H. Rosenbauer,et al.  Singly‐ionized helium in the driver gas of an interplanetary shock wave , 1980 .

[6]  P. Démoulin,et al.  Global and local expansion of magnetic clouds in the inner heliosphere , 2012, 1206.1112.

[7]  S. Lepri,et al.  Iron Charge Distribution as an Identifier of Interplanetary Coronal Mass Ejections , 2001 .

[8]  C. Russell,et al.  A new parameter to define interplanetary coronal mass ejections , 2005 .

[9]  Hilary V. Cane,et al.  An Introduction to CMEs and Energetic Particles , 2006 .

[10]  J. Richardson,et al.  Propagation of the October/November 2003 CMEs through the heliosphere , 2005 .

[11]  N. Gopalswamy Properties of Interplanetary Coronal Mass Ejections , 2007 .

[12]  V. Bothmer,et al.  The structure and origin of magnetic clouds in the solar wind , 1997 .

[13]  G. Kanbach,et al.  A 154-day periodicity in the occurrence of hard solar flares? , 1984, Nature.

[14]  Bojan Vršnak,et al.  Influence of the aerodynamic drag on the motion of interplanetary ejecta , 2002 .

[15]  I. Richardson,et al.  A 22-year dependence in the size of near-ecliptic corotating cosmic ray depressions during five solar minima , 1999 .

[16]  R. Lepping,et al.  Comparison of the Characteristics of Magnetic Clouds and Magnetic Cloud-Like Structures for the Events of 1995 – 2003 , 2007 .

[17]  Andrew Wilson Solar variability as an input to the Earth's environment , 2003 .

[18]  J. T. Gosling,et al.  Helium abundance enhancements in the solar wind , 1982 .

[19]  Y. Lou Rossby-Type Wave-Induced Periodicities in Flare Activities and Sunspot Areas or Groups during Solar Maxima , 2000 .

[20]  Chang Liu,et al.  The May 13, 2005 Eruption: Observations, Data Analysis and Interpretation , 2006 .

[21]  W. Gonzalez,et al.  The association of coronal mass ejections with their effects near the Earth , 2005 .

[22]  David A. Benson,et al.  Lagrangian simulation of multidimensional anomalous transport at the MADE site , 2008 .

[23]  R. Goldstein,et al.  Features observed in the trailing regions of interplanetary clouds from coronal mass ejections , 1997 .

[24]  W. Feldman,et al.  He+ and other unusual ions in the solar wind: A systematic search covering 1972–1980 , 1982 .

[25]  I. Richardson,et al.  Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies , 2004 .

[26]  N. Gopalswamy,et al.  Predicting the 1‐AU arrival times of coronal mass ejections , 2001 .

[27]  J. Geiss,et al.  Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE , 1999 .

[28]  C. Russell,et al.  ON DEFINING INTERPLANETARY CORONAL MASS EJECTIONs FROM FLUID PARAMETERS , 2005 .

[29]  A. Reinard Analysis of Interplanetary Coronal Mass Ejection Parameters as a Function of Energetics, Source Location, and Magnetic Structure , 2008 .

[30]  Jie Zhang,et al.  Interplanetary origin of multiple‐dip geomagnetic storms , 2008 .

[31]  S. Bame,et al.  Solar flares and solar wind helium enrichments: July 1965–July 1967 , 1972 .

[32]  W. Feldman,et al.  Observations of large fluxes of He/+/ in the solar wind following an interplanetary shock , 1980 .

[33]  H. Cane,et al.  A survey of interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002 , 2003 .

[34]  Victor J. Pizzo,et al.  Anomalously low proton temperatures in the solar wind following interplanetary shock waves—evidence for magnetic bottles? , 1973 .

[35]  I. Richardson A Survey of Bidirectional >= 1 MeV Ion Flows during the HELIOS 1 and HELIOS 2 Missions: Observations from the Goddard Space Flight Center Instruments , 1994 .

[36]  Ian G. Richardson,et al.  Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta , 1995 .

[37]  J. Zhang,et al.  Multiple‐step geomagnetic storms and their interplanetary drivers , 2008 .

[38]  I. Richardson,et al.  Bidirectional about 1 MeV/amu ion intervals in 1973-1991 observed by the Goddard Space Flight Center instruments on IMP 8 and ISEE 3/ICE , 1993 .

[39]  H. Koskinen,et al.  Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 , 2005 .

[40]  Christopher T. Russell,et al.  Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004 , 2006 .

[41]  P. Démoulin,et al.  Expected in Situ Velocities from a Hierarchical Model for Expanding Interplanetary Coronal Mass Ejections , 2008 .

[42]  Nat Gopalswamy,et al.  Arrival time of halo coronal mass ejections in the vicinity of the Earth , 2004 .

[43]  I. Richardson,et al.  A simple concept for modeling cosmic ray modulation in the inner heliosphere , 2002 .

[44]  L. Burlaga,et al.  Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998-1999 , 2001 .

[45]  S. Owocki,et al.  The solar wind ionization state as a coronal temperature diagnostic , 1983 .

[46]  Robert L. Tokar,et al.  A prolonged He+ enhancement within a coronal mass ejection in the solar wind , 1999 .

[47]  G. Siscoe,et al.  Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions , 2005 .

[48]  S. Lepri,et al.  Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum , 2004 .

[49]  L. Burlaga,et al.  Interplanetary magnetic clouds at 1 AU , 1982 .

[50]  I. Richardson,et al.  Signatures of shock drivers in the solar wind and their dependence on the solar source location , 1993 .

[51]  R. Mewaldt,et al.  Role of flares and shocks in determining solar energetic particle abundances , 2006 .

[52]  Enhanced Rieger-type periodicities' detection in X-ray solar flares and statistical validation of Rossby waves' existence , 2008 .

[53]  F. Mcdonald,et al.  Composition of Solar Energetic Particles , 1975 .

[54]  H. Cane The large-scale structure of flare-associated interplanetary shocks , 1988 .

[55]  J. Gosling,et al.  Counterstreaming electrons in magnetic clouds , 2000 .

[56]  J. Ballester,et al.  MAGNETIC ROSSBY WAVES IN THE SOLAR TACHOCLINE AND RIEGER-TYPE PERIODICITIES , 2009, 0911.4591.

[57]  I. Richardson,et al.  Particle flows observed in ejecta during solar event onsets and their implication for the magnetic field topology , 1996 .

[58]  J. Lean Evolution of the 155 Day Periodicity in Sunspot Areas during Solar Cycles 12 to 21 , 1990 .

[59]  A. Hundhausen,et al.  Ionization state of the interplanetary plasma , 1968 .

[60]  H. Cane,et al.  The ∼150 day quasi‐periodicity in interplanetary and solar phenomena during cycle 23 , 2005 .

[61]  Ian G. Richardson,et al.  Energetic Particles and Corotating Interaction Regions in the Solar Wind , 2004 .

[62]  T. Zurbuchen,et al.  In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections , 2006 .

[63]  W. C. Erickson,et al.  Solar flares, type III radio bursts, coronal mass ejections, and energetic particles , 2002 .

[64]  O. S. St. Cyr,et al.  Coronal mass ejections, interplanetary ejecta and geomagnetic storms , 2000 .

[65]  A. N. Zhukov,et al.  Major geomagnetic storms (Dst<=-100~nT) generated by corotating interaction regions in 1996--2004 , 2006 .

[66]  Jie Zhang,et al.  Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005 , 2007 .

[67]  J. Richardson,et al.  Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU , 2005 .

[68]  J. Gosling,et al.  The eastward deflection of fast coronal mass ejecta in interplanetary space , 1987 .

[69]  T. Horbury,et al.  ICMEs in the Inner Heliosphere: Origin, Evolution and Propagation Effects , 2006 .

[70]  R. H. Becker,et al.  Elemental Abundances of the Bulk Solar Wind: Analyses from Genesis and ACE , 2007 .

[71]  N. Gopalswamy,et al.  Interplanetary acceleration of coronal mass ejections , 2000 .

[72]  T. Sanderson,et al.  Energetic Particle Observations , 2006 .

[73]  Hui Wang,et al.  A regional climate model study of how biomass burning aerosol impacts land-atmosphere interactions over the Amazon , 2008 .

[74]  I. Richardson,et al.  The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation , 2004 .

[75]  Chang Liu,et al.  The Eruption from a Sigmoidal Solar Active Region on 2005 May 13 , 2007, 0707.2240.

[76]  John W. Belcher,et al.  A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU , 2005 .

[77]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[78]  L. Burlaga,et al.  Successive CMEs and complex ejecta , 2002 .

[79]  I. Richardson,et al.  Cosmic ray decreases and shock structure: A multispacecraft study , 1994 .

[80]  A. Galvin,et al.  Consequences of the force-free model of magnetic clouds for their heliospheric evolution , 2007 .

[81]  D. Baker,et al.  Bidirectional solar wind electron heat flux events , 1987 .

[82]  P. Bochsler Abundances and charge states of particles in the solar wind , 2000 .

[83]  C. Farrugia,et al.  Solar‐cycle variation of low density solar wind during more than three solar cycles , 2000 .

[84]  J. Zhang,et al.  Sizes and relative geoeffectiveness of interplanetary coronal mass ejections and the preceding shock sheaths during intense storms in 1996–2005 , 2008, Geophysical Research Letters.

[85]  A. Reinard Comparison of Interplanetary CME Charge State Composition with CME-associated Flare Magnitude , 2005 .

[86]  Yuming Wang,et al.  A statistical study on the geoeffectiveness of Earth‐directed coronal mass ejections from March 1997 to December 2000 , 2002 .

[87]  J. Steinberg,et al.  Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle , 2007 .

[88]  H. Cane Coronal Mass Ejections and Forbush Decreases , 2000 .

[89]  G. Gloeckler,et al.  Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft , 1998 .

[90]  L. Lanzerotti,et al.  October/November 2003 interplanetary coronal mass ejections: ACE/EPAM solar energetic particle observations , 2005 .

[91]  T. T. von Rosenvinge,et al.  The role of interplanetary shocks in the longitude distribution of solar energetic particles , 1988 .