Theoretically based optimal large-eddy simulation

Large eddy simulation (LES), in which the large scales of turbulence are simulated while the effects of the small scales are modeled, is an attractive approach for predicting the behavior of turbulent flows. However, there are a number of modeling and formulation challenges that need to be addressed for LES to become a robust and reliable engineering analysis tool. Optimal LES is a LES modeling approach developed to address these challenges. It requires multipoint correlation data as input to the modeling, and to date these data have been obtained from direct numerical simulations (DNSs). If optimal LES is to be generally useful, this need for DNS statistical data must be overcome. In this paper, it is shown that the Kolmogorov inertial range theory, along with an assumption of small-scale isotropy, the application of the quasinormal approximation and a mild modeling assumption regarding the three-point third-order correlation are sufficient to determine all the correlation data required for optimal LES m...

[1]  T. Kármán,et al.  On the Statistical Theory of Isotropic Turbulence , 1938 .

[2]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[3]  W. H. Reid,et al.  On the decay of a normally distributed and homogenous turbulent velocity field , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  R. Kraichnan Relation of Fourth-Order to Second-Order Moments in Stationary Isotropic Turbulence , 1957 .

[5]  Y. Ogura A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence , 1963, Journal of Fluid Mechanics.

[6]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[7]  S. Orszag Analytical theories of turbulence , 1970, Journal of Fluid Mechanics.

[8]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[9]  Ronald Adrian,et al.  On the role of conditional averages in turbulence theory. , 1975 .

[10]  P. Moin,et al.  Numerical Simulation of Turbulent Flows , 1984 .

[11]  Yassin A. Hassan,et al.  Approximation of turbulent conditional averages by stochastic estimation , 1989 .

[12]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[13]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[14]  Ronald Adrian,et al.  Stochastic Estimation of Sub-Grid Scale Motions , 1990 .

[15]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  Terje O. Espelid,et al.  Algorithm 698: DCUHRE: an adaptive multidemensional integration routine for a vector of integrals , 1991, TOMS.

[18]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[19]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[20]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[21]  P. Moin,et al.  On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows , 1997 .

[22]  R. Moser,et al.  Optimal LES formulations for isotropic turbulence , 1999, Journal of Fluid Mechanics.

[23]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[24]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[25]  Breakdown of continuity in large-eddy simulation , 2001 .

[26]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[27]  Hervé Jeanmart,et al.  On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation , 2001, Journal of Fluid Mechanics.

[28]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[29]  Robert D. Moser,et al.  Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data , 2002 .

[30]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .

[31]  Robert D. Moser,et al.  Optimal large-eddy simulation of forced Burgers equation , 2002 .

[32]  Robert D. Moser,et al.  Finite-volume optimal large-eddy simulation of isotropic turbulence , 2004 .

[33]  R. Moser,et al.  Optimal large-eddy simulation results for isotropic turbulence , 2004, Journal of Fluid Mechanics.

[34]  R. Moser,et al.  Validity of quasinormal approximation in turbulent channel flow , 2005 .

[35]  R. Moser,et al.  An inertial range model for the three-point third-order velocity correlation , 2007 .

[36]  R. Moser,et al.  Representing anisotropy of two-point second-order turbulence velocity correlations using structure tensors , 2008 .