States and operators in the spacetime algebra

The spacetime algebra (STA) is the natural, representation-free language for Dirac's theory of the electron. Conventional Pauli, Dirac, Weyl, and Majorana spinors are replaced by spacetime multivectors, and the quantum σ- and γ-matrices are replaced by two-sided multivector operations. The STA is defined over the reals, and the role of the scalar unit imaginary of quantum mechanics is played by a fixed spacetime bivector. The extension to multiparticle systems involves a separate copy of the STA for each particle, and it is shown that the standard unit imaginary induces correlations between these particle spaces. In the STA, spinors and operators can be manipulated without introducing any matrix representation or coordinate system. Furthermore, the formalism provides simple expressions for the spinor bilinear covariants which dispense with the need for the Fierz identities. A reduction to2+1 dimensions is given, and applications beyond the Dirac theory are discussed.

[1]  M. Plyushchay Spin from isospin: the model of a superparticle in a non-grassmannian approach , 1992 .

[2]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[3]  A. L. Salas-Brito,et al.  Conformal invariance in a Dirac oscillator , 1992 .

[4]  R. Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[5]  Roger Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[6]  R. Penrose,et al.  Spinor and twistor methods in space-time geometry , 1986 .

[7]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[8]  E. Capelas de Oliveira,et al.  Covariant, algebraic, and operator spinors , 1990 .

[9]  A. Barut,et al.  Classical Model of the Dirac Electron , 1984 .

[10]  R. Penrose,et al.  Two-spinor calculus and relativistic fields , 1984 .

[11]  S. Gull Charged Particles at Potential Steps , 1991 .

[12]  Robin Tucker,et al.  An Introduction to Spinors and Geometry with Applications in Physics , 1988 .

[13]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[14]  S. Gull,et al.  Electron paths, tunnelling, and diffraction in the spacetime algebra , 1993 .

[15]  D. Hestenes Observables, operators, and complex numbers in the Dirac theory , 1975 .

[16]  Chris Doran,et al.  A multivector derivative approach to Lagrangian field theory , 1993 .

[17]  Dirac Equation for Bispinor Densities , 1986 .

[18]  W. I. Fushchich,et al.  Symmetry and exact solutions of nonlinear spinor equations , 1989 .

[19]  H. Nicolai Introduction to Supersymmetry and Supergravity , 1983 .

[20]  R. Penrose,et al.  Spinors and Space‐Time, Volume I: Two‐Spinor Calculus and Relativistic Fields , 1986 .

[21]  N. Salingaros On the classification of Clifford algebras and their relation to spinors in n dimensions , 1982 .

[22]  J. Crawford On the algebra of Dirac bispinor densities: Factorization and inversion theorems , 1985 .

[23]  David Hestenes,et al.  Clifford Algebra and the Interpretation of Quantum Mechanics , 1986 .

[24]  Sidney D. Drell,et al.  Relativistic Quantum Mechanics , 1965 .

[25]  P. C. Schmidt,et al.  H. A. Bethe and E. Salpeter: Quantum Mechanics of One‐ and Two‐Electron atoms. Plenum/Rosetta, New York 1977. 370 Seiten, Preis: $ 8.95. , 1978 .

[26]  F. Reifler A vector wave equation for neutrinos , 1984 .

[27]  David Hestenes,et al.  Space-time algebra , 1966 .

[28]  P. West Introduction To Supersymmetry And Supergravity , 1986 .

[29]  J. Reinhardt,et al.  Quantum Electrodynamics , 2008, Introduction to Quantum Mechanics.

[30]  D. Hestenes,et al.  Consistency in the formulation of the Dirac, Pauli, and Schrödinger theories , 1975 .

[31]  M. Plyushchay Lagrangian formulation for the massless (super)particles in (super)twistor approach , 1990 .

[32]  佐藤 光,et al.  C. Itzykson and J. Zuber: Quantum Field Theory, McGraw-Hill, New York, 1980, 705ぺージ, 24×17cm, 18,870円. , 1981 .

[33]  R. Jackiw,et al.  Statistics without spin. Massless D=3 systems , 1991 .

[34]  D. Hestenes Vectors, spinors, and complex numbers in classical and quantum physics , 1971 .

[35]  E. Marx Spinor equations in relativistic quantum mechanics , 1992 .