Material properties of biofilms—a review of methods for understanding permeability and mechanics

Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.

[1]  P. Stewart,et al.  Rapid Diffusion of Fluorescent Tracers into Staphylococcus epidermidis Biofilms Visualized by Time Lapse Microscopy , 2005, Antimicrobial Agents and Chemotherapy.

[2]  P. Doyle,et al.  Static and dynamic errors in particle tracking microrheology. , 2005, Biophysical journal.

[3]  T. Thurnheer,et al.  Mass Transport of Macromolecules within an In Vitro Model of Supragingival Plaque , 2003, Applied and Environmental Microbiology.

[4]  Todd M. Squires,et al.  Fluid Mechanics of Microrheology , 2010 .

[5]  V. Körstgens,et al.  Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. , 2001, Journal of microbiological methods.

[6]  Hideki Harada,et al.  Adhesion strength of biofilm developed in an attached-growth reactor , 1994 .

[7]  K. Wilkinson,et al.  Diffusion of nanoparticles in a biofilm. , 2011, Environmental science & technology.

[8]  S. Kjelleberg,et al.  Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9 , 1990, Applied and environmental microbiology.

[9]  M. Fontaine‐Aupart,et al.  Correlative Time-Resolved Fluorescence Microscopy To Assess Antibiotic Diffusion-Reaction in Biofilms , 2012, Antimicrobial Agents and Chemotherapy.

[10]  W. M. Sanders,et al.  Microelectrode determination of oxygen profiles in microbial slime systems , 1969 .

[11]  David G. Grier,et al.  Holographic microrheology of polysaccharides from Streptococcus mutans biofilms , 2009 .

[12]  F. Volke,et al.  Measuring local flow velocities and biofilm structure in biofilm systems with Magnetic Resonance Imaging (MRI) , 2003, Biotechnology and bioengineering.

[13]  B. Amsden,et al.  Solute Diffusion within Hydrogels. Mechanisms and Models , 1998 .

[14]  I. Klimant,et al.  Ultrabright planar optodes for luminescence life-time based microscopic imaging of O₂ dynamics in biofilms. , 2011, Journal of microbiological methods.

[15]  Leonid Pavlovsky,et al.  In situ rheology of Staphylococcus epidermidis bacterial biofilms. , 2013, Soft matter.

[16]  Blaise R. Boles,et al.  Swimming cells promote a dynamic environment within biofilms , 2012, Proceedings of the National Academy of Sciences.

[17]  P. Bishop,et al.  Monitoring the influence of toxic compounds on microbial denitrifying biofilm processes. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[18]  Maria Carmo-Fonseca,et al.  Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. , 2004, Molecular biology of the cell.

[19]  P. Stewart,et al.  Mechanisms of antibiotic resistance in bacterial biofilms. , 2002, International journal of medical microbiology : IJMM.

[20]  S. Aymerich,et al.  Bacterial swimmers that infiltrate and take over the biofilm matrix , 2012, Proceedings of the National Academy of Sciences.

[21]  H. Nelis,et al.  Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy. , 2013, Nanomedicine.

[22]  L. Nilsson,et al.  Factors affecting development of rifampicin resistance in biofilm-producing Staphylococcus epidermidis. , 1997, The Journal of antimicrobial chemotherapy.

[23]  Denis Wirtz,et al.  Particle Tracking Microrheology of Complex Fluids , 1997 .

[24]  H. Lappin-Scott,et al.  Relationship between mass transfer coefficient and liquid flow velocity in heterogenous biofilms using microelectrodes and confocal microscopy. , 1997, Biotechnology and bioengineering.

[25]  M. Parsek,et al.  Pseudomonas aeruginosa Psl Is a Galactose- and Mannose-Rich Exopolysaccharide , 2007, Journal of bacteriology.

[26]  S. Seiffert,et al.  Systematic evaluation of FRAP experiments performed in a confocal laser scanning microscope , 2005, Journal of microscopy.

[27]  Thomas G. Mason,et al.  Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation , 2000 .

[28]  H. Vaudry,et al.  Rheology of biofilms formed at the surface of NF membranes in a drinking water production unit , 2008, Biofouling.

[29]  G. Dunny,et al.  Enterococcus faecalis Produces Abundant Extracellular Structures Containing DNA in the Absence of Cell Lysis during Early Biofilm Formation , 2012, mBio.

[30]  F. MacKintosh,et al.  Microrheology : Rheology and rheological techniques , 1999 .

[31]  K. Lewis,et al.  Riddle of Biofilm Resistance , 2001, Antimicrobial Agents and Chemotherapy.

[32]  Zbigniew Lewandowski,et al.  Effects of biofilm structures on oxygen distribution and mass transport , 1994, Biotechnology and bioengineering.

[33]  Philip S. Stewart,et al.  Diffusion in Biofilms , 2003, Journal of bacteriology.

[34]  P. Georges,et al.  Heterogeneity of Diffusion Inside Microbial Biofilms Determined by Fluorescence Correlation Spectroscopy Under Two-photon Excitation¶ , 2002 .

[35]  Kevin R Minard,et al.  NMR methods for in situ biofilm metabolism studies. , 2005, Journal of microbiological methods.

[36]  J. Li In situ identification of azo dye inhibition effects on nitrifying biofilms using microelectrodes , 2002 .

[37]  V. Körstgens,et al.  Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[38]  H. Flemming,et al.  The biofilm matrix , 2010, Nature Reviews Microbiology.

[39]  R. Ewoldt,et al.  Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials , 2010 .

[40]  Statistical and sampling issues when using multiple particle tracking. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  K. Wilkinson,et al.  Quantifying Diffusion in a Biofilm of Streptococcus mutans , 2010, Antimicrobial Agents and Chemotherapy.

[42]  J. Lippincott-Schwartz,et al.  Diffusional Mobility of Golgi Proteins in Membranes of Living Cells , 1996, Science.

[43]  P. Stewart,et al.  Mini-review: Convection around biofilms , 2012, Biofouling.

[44]  W. M. Sanders,et al.  Microprobe techniques for determining diffusivities and respiration rates in microbial slime systems , 1969 .

[45]  Clive Standley,et al.  Advances in microscopy techniques. , 2011, Archives of pathology & laboratory medicine.

[46]  J. Bryers,et al.  Local macromolecule diffusion coefficients in structurally non-uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP). , 1998, Biotechnology and bioengineering.

[47]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[48]  Boo Shan Tseng,et al.  The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. , 2013, Environmental microbiology.

[49]  Cory J. Rupp,et al.  Viscoelastic fluid description of bacterial biofilm material properties. , 2002, Biotechnology and bioengineering.

[50]  Howard A. Barnes,et al.  The yield stress—a review or 'panta roi'—everything flows? , 1999 .

[51]  Zhibing Zhang,et al.  Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes. , 2005, Colloids and surfaces. B, Biointerfaces.

[52]  R. Hozalski,et al.  Development and testing of a novel microcantilever technique for measuring the cohesive strength of intact biofilms , 2010, Biotechnology and bioengineering.

[53]  B. Kundukad,et al.  Viscoelasticity of entangled lambda-phage DNA solutions. , 2008, The Journal of chemical physics.

[54]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[55]  Z Lewandowski,et al.  Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. , 1997, Biotechnology and bioengineering.

[56]  M. Brenner,et al.  Liquid transport facilitated by channels in Bacillus subtilis biofilms , 2012, Proceedings of the National Academy of Sciences.

[57]  Paul Stoodley,et al.  Relation between the structure of an aerobic biofilm and transport phenomena , 1995 .

[58]  B. M. Gurumurthy,et al.  Self Healing Materials: A New Era in Material Technology: A Review , 2016 .

[59]  M. Fontaine‐Aupart,et al.  Fluorescence Correlation Spectroscopy To Study Diffusion and Reaction of Bacteriophages inside Biofilms , 2008, Applied and Environmental Microbiology.

[60]  R. Briandet,et al.  Image-based fluorescence recovery after photobleaching (FRAP) to dissect vancomycin diffusion-reaction processes in Staphylococcus aureus biofilms , 2011, European Conference on Biomedical Optics.

[61]  S. Lévêque-Fort,et al.  In situ measurements of viral particles diffusion inside mucoid biofilms. , 2005, Comptes rendus biologies.

[62]  S. Altobelli,et al.  NMR and Microelectrode Studies of Hydrodynamics and Kinetics in Biofilms , 1993 .

[63]  Markus Böl,et al.  Recent advances in mechanical characterisation of biofilm and their significance for material modelling , 2013, Critical reviews in biotechnology.

[64]  Juergen Siepmann,et al.  Modeling of diffusion controlled drug delivery. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[65]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[66]  Miqin Zhang,et al.  Chitosan-based hydrogels for controlled, localized drug delivery. , 2010, Advanced drug delivery reviews.

[67]  Tae-Sun Lim,et al.  MEMS needle-type sensor array for in situ measurements of dissolved oxygen and redox potential. , 2007, Environmental science & technology.

[68]  James K Fredrickson,et al.  Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms. , 2008, Journal of microbiological methods.

[69]  John F. Brady,et al.  Hindered transport of spherical macromolecules in fibrous membranes and gels , 1989 .

[70]  M. Sugai,et al.  Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. , 1997, Chemotherapy.

[71]  R. Treloar,et al.  Diffusion and binding measurements within oral biofilms using fluorescence photobleaching recovery methods. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[72]  P Stoodley,et al.  The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms , 2002, Journal of Industrial Microbiology and Biotechnology.

[73]  H. Barnes,et al.  An introduction to rheology , 1989 .

[74]  P. Lens,et al.  Magnetic resonance microscopy of iron transport in methanogenic granules. , 2009, Journal of magnetic resonance.

[75]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[76]  P. Bishop,et al.  Stratification and Oxidation–Reduction Potential Change in an Aerobic and Sulfate‐Reducing Biofilm Studied Using Microelectrodes , 2001, Water environment research : a research publication of the Water Environment Federation.

[77]  J. Lawrence,et al.  Determination of Diffusion Coefficients in Biofilms by Confocal Laser Microscopy , 1994, Applied and environmental microbiology.

[78]  M Edidin,et al.  Measurement of membrane protein lateral diffusion in single cells. , 2003, Science.

[79]  Cory J. Rupp,et al.  Commonality of elastic relaxation times in biofilms. , 2004, Physical review letters.

[80]  D A Weitz,et al.  Two-point microrheology of inhomogeneous soft materials. , 2000, Physical review letters.

[81]  Anna C. Balazs,et al.  Modeling self-healing materials , 2007 .

[82]  H. As,et al.  Characterization of the diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance , 1998, Biotechnology and bioengineering.

[83]  W. S. Veeman,et al.  Diffusion in Pseudomonas aeruginosa biofilms: a pulsed field gradient NMR study. , 2000, Journal of biotechnology.

[84]  Philip S. Stewart,et al.  Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin , 2003, Antimicrobial Agents and Chemotherapy.

[85]  S. Kjelleberg,et al.  Biofilm shows spatially stratified metabolic responses to contaminant exposure. , 2012, Environmental microbiology.

[86]  E. Stelzer,et al.  Photobleaching GFP reveals protein dynamics inside live cells. , 1999, Trends in cell biology.

[87]  Nelly Henry,et al.  Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. , 2012, Biophysical journal.

[88]  Roberto Kolter,et al.  Why are bacteria refractory to antimicrobials? , 2002, Current opinion in microbiology.

[89]  A. Matin,et al.  Tetracycline Rapidly Reaches All the Constituent Cells of Uropathogenic Escherichia coli Biofilms , 2002, Antimicrobial Agents and Chemotherapy.

[90]  J. Lawrence,et al.  In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. , 2007, Canadian journal of microbiology.

[91]  P. Stewart,et al.  Theoretical aspects of antibiotic diffusion into microbial biofilms , 1996, Antimicrobial agents and chemotherapy.

[92]  C. Kirschner,et al.  The role of intermolecular interactions: studies on model systems for bacterial biofilms. , 1999, International journal of biological macromolecules.

[93]  H. Ceri,et al.  MIC Versus MBEC to Determine the Antibiotic Sensitivity of Staphylococcus aureus in Peritoneal Dialysis Peritonitis , 2010, Peritoneal Dialysis International.

[94]  P. Stewart,et al.  A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms , 1998, Biotechnology and bioengineering.

[95]  C. F. van der Walle,et al.  Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[96]  Raymond M. Hozalski,et al.  Determination of biofilm mechanical properties from tensile tests performed using a micro-cantilever method , 2010, Biofouling.

[97]  Z Lewandowski,et al.  Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. , 1999, Biotechnology and bioengineering.

[98]  F P T Baaijens,et al.  Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. , 2006, Journal of microbiological methods.

[99]  J. Costerton,et al.  Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.

[100]  Z. Lewandowski,et al.  Quantifying selected growth parameters of Leptothrix discophora SP-6 in biofilms from oxygen concentration profiles , 2003 .

[101]  N. Revsbech,et al.  Diffusion characteristics of microbial communities determined by use of oxygen microsensors , 1989 .

[102]  Oliver Lieleg,et al.  Mechanical robustness of Pseudomonas aeruginosa biofilms. , 2011, Soft matter.

[103]  K. Ahn,et al.  Large amplitude oscillatory shear as a way to classify the complex fluids , 2002 .

[104]  T. Yu,et al.  Microsensor measurement of oxygen concentration in biofilms: from one dimension to three dimensions. , 2004, Water Science and Technology.

[105]  I. Sutherland Biofilm exopolysaccharides: a strong and sticky framework. , 2001, Microbiology.

[106]  M. Caldara,et al.  The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms , 2013, PLoS pathogens.

[107]  Nelly Henry,et al.  Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death , 2013 .

[108]  Denis Wirtz,et al.  Particle-tracking microrheology of living cells: principles and applications. , 2009, Annual review of biophysics.

[109]  P. Bishop,et al.  Time course observations of nitrifying biofilm development using microelectrodes , 2004 .

[110]  W. Deen Hindered transport of large molecules in liquid‐filled pores , 1987 .

[111]  E. H. Hardy NMR Methods for the Investigation of Structure and Transport , 2011 .

[112]  Howard A. Barnes,et al.  The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .

[113]  P. Stewart,et al.  Chemical and antimicrobial treatments change the viscoelastic properties of bacterial biofilms , 2011, Biofouling.

[114]  S. Zustiak,et al.  Solute diffusion and interactions in cross-linked poly(ethylene glycol) hydrogels studied by Fluorescence Correlation Spectroscopy. , 2010, Soft matter.

[115]  D. Goldmann,et al.  Use of Confocal Microscopy To Analyze the Rate of Vancomycin Penetration through Staphylococcus aureus Biofilms , 2005, Antimicrobial Agents and Chemotherapy.

[116]  Paige J. Novak,et al.  Biofilm Cohesiveness Measurement Using a Novel Atomic Force Microscopy Methodology , 2007, Applied and Environmental Microbiology.

[117]  Gustavo Carrero,et al.  Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. , 2003, Methods.

[118]  Z Lewandowski,et al.  Measurement of local mass transfer coefficient in biofilms , 1995, Biotechnology and bioengineering.

[119]  B. Jørgensen,et al.  Diffusive boundary layers and the oxygen uptake of sediments and detritus1 , 1985 .

[120]  Cory J. Rupp,et al.  Biofilm material properties as related to shear-induced deformation and detachment phenomena , 2002, Journal of Industrial Microbiology and Biotechnology.

[121]  T. Waigh Microrheology of complex fluids , 2005 .

[122]  John Heritage,et al.  Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. , 2006, The Journal of antimicrobial chemotherapy.

[123]  R. Hozalski,et al.  Micro-cantilever method for measuring the tensile strength of biofilms and microbial flocs. , 2003, Journal of microbiological methods.

[124]  Z. Lewandowski,et al.  Liquid Flow in Biofilm Systems , 1994, Applied and environmental microbiology.

[125]  Q. D. Nguyen,et al.  Measuring the Flow Properties of Yield Stress Fluids , 1992 .

[126]  Magnetic Resonance Imaging of Mass Transport and Structure Inside a Phototrophic Biofilm , 2013, Current Microbiology.

[127]  D A Weitz,et al.  Microrheology probes length scale dependent rheology. , 2006, Physical review letters.

[128]  M. Kühl,et al.  A nitrite microsensor for profiling environmental biofilms , 1997, Applied and environmental microbiology.

[129]  E. Ivanova,et al.  Bacterial Extracellular Polysaccharides Involved in Biofilm Formation , 2009, Molecules.

[130]  S. Taweechaisupapong,et al.  Diffusion and activity of antibiotics against Burkholderia pseudomallei biofilms. , 2012, International journal of antimicrobial agents.

[131]  Mu-ming Poo,et al.  Lateral diffusion of rhodopsin in the photoreceptor membrane , 1974, Nature.

[132]  J. C. van den Heuvel,et al.  Microelectrode Measurements of the Activity Distribution in Nitrifying Bacterial Aggregates , 1993, Applied and environmental microbiology.

[133]  G. Entine,et al.  Lateral Diffusion of Visual Pigment in Photoreceptor Disk Membranes , 1974, Science.

[134]  D. de Beer,et al.  Liquid flow in heterogeneous biofilms , 1994, Biotechnology and bioengineering.

[135]  Paul Stoodley,et al.  Viscoelastic Properties of a Mixed Culture Biofilm from Rheometer Creep Analysis , 2003, Biofouling.

[136]  R. Phillips,et al.  A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. , 2000, Biophysical journal.

[137]  J. Keeler Understanding NMR Spectroscopy , 2005 .

[138]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[139]  I. Sutherland,et al.  The biofilm matrix--an immobilized but dynamic microbial environment. , 2001, Trends in microbiology.

[140]  Anindita Das,et al.  Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. , 2010, The Journal of antimicrobial chemotherapy.

[141]  T. R. Bott,et al.  Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation , 1998 .

[142]  J. Dutcher,et al.  Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy. , 2009, Biophysical journal.

[143]  J. McLean,et al.  Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy , 2008, The ISME Journal.

[144]  Mehrdad Hamidi,et al.  Hydrogel nanoparticles in drug delivery. , 2008, Advanced drug delivery reviews.

[145]  Z. Lewandowski,et al.  Microelectrode measurements of local mass transport rates in heterogeneous biofilms. , 1998, Biotechnology and bioengineering.

[146]  K. Schleifer,et al.  Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes , 1996, Applied and environmental microbiology.

[147]  K. Malcolm,et al.  Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils , 2005, Infection and Immunity.

[148]  N. Peppas,et al.  Physicochemical foundations and structural design of hydrogels in medicine and biology. , 2000, Annual review of biomedical engineering.

[149]  J. Younger,et al.  Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[150]  C. F. Curtiss,et al.  Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics , 1987 .

[151]  J. Lammerding,et al.  Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers , 2011 .