Individuation of monoclonal anti-HPV16 E7 antibody linear peptide epitope by computational biology

[1]  C. Akdis,et al.  T Cell Epitope-Containing Hypoallergenic Recombinant Fragments of the Major Birch Pollen Allergen, Bet v 1, Induce Blocking Antibodies1 , 2000, The Journal of Immunology.

[2]  Alberta Lucchese,et al.  Computer‐assisted analysis of molecular mimicry between human papillomavirus 16 E7 oncoprotein and human protein sequences , 2000, Immunology and cell biology.

[3]  R Apweiler,et al.  The role SWISS-PROT and TrEMBL play in the genome research environment. , 2000, Journal of biotechnology.

[4]  Peter B. McGarvey,et al.  PIR: a new resource for bioinformatics , 2000, Bioinform..

[5]  L. Vander Elst,et al.  Major T cell epitope‐containing peptides can elicit strong antibody responses , 2000, European journal of immunology.

[6]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[7]  Terri K. Attwood,et al.  FingerPRINTScan: intelligent searching of the PRINTS motif database , 1999, Bioinform..

[8]  N. Vaĭsman,et al.  Immunogenicity of H-2Kb-low affinity, high affinity, and covalently-bound peptides in anti-tumor vaccination. , 1999, Immunology letters.

[9]  Soldano Ferrone,et al.  Molecular mimicry of phage displayed peptides mimicking GD3 ganglioside , 1999, Peptides.

[10]  D. Kanduc,et al.  Modulation of HPV16 E7 translation by tRNAs in eukaryotic cell‐free translation systems , 1998, Biochemistry and molecular biology international.

[11]  M. McMillan,et al.  The ability of peptides to induce cytotoxic T cells in vitro does not strongly correlate with their affinity for the H-2Ld molecule: implications for vaccine design and immunotherapy. , 1997, Molecular immunology.

[12]  P. Borrow,et al.  Discriminated selection among viral peptides with the appropriate anchor residues: implications for the size of the cytotoxic T-lymphocyte repertoire and control of viral infection , 1995, Journal of virology.

[13]  H. Grey,et al.  Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. , 1995, Journal of immunology.

[14]  M. Feltkamp,et al.  Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. , 1994, Molecular immunology.

[15]  M. Feltkamp,et al.  Vaccination with cytotoxic T lymphocyte epitope‐containing peptide protects against a tumor induced by human papillomavirus type 16‐transformed cells , 1993, European journal of immunology.

[16]  M. Gefter,et al.  Immunodominance: intermolecular competition between MHC class II molecules by covalently linked T cell epitopes. , 1992, Journal of immunology.

[17]  J. Seidman,et al.  Immunodominance is altered in T cell receptor (beta-chain) transgenic mice without the generation of a hole in the repertoire. , 1991, Journal of immunology.

[18]  S. Suhai,et al.  Human papillomavirus type 16 DNA sequence. , 1985, Virology.

[19]  W R Pearson,et al.  Flexible sequence similarity searching with the FASTA3 program package. , 2000, Methods in molecular biology.

[20]  G. Tortolero-Luna,et al.  Studies on in vivo induction of cytotoxic T lymphocyte responses by synthetic peptides from E6 and E7 oncoproteins of human papillomavirus type 16. , 1995, Viral immunology.

[21]  G. B. Wisdom,et al.  Peptide antigens : a practical approach , 1994 .