A Dual-Wavelength Ocean Lidar for Vertical Profiling of Oceanic Backscatter and Attenuation

Kaipeng Li 1,2, Yan He 1,*, Jian Ma 1, Zhengyang Jiang 1,2, Chunhe Hou 1, Weibiao Chen 1, Xiaolei Zhu 1, Peng Chen 3, Junwu Tang 4, Songhua Wu 5,6 , Fanghua Liu 1,2, Yuan Luo 7, Yufei Zhang 1,2 and Yongqiang Chen 1,2 1 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; likaipeng@siom.ac.cn (K.L.); majian@siom.ac.cn (J.M.); zyjiang@siom.ac.cn (Z.J.); chhou@siom.ac.cn (C.H.); wbchen@siom.ac.cn (W.C.); xlzhu@siom.ac.cn (X.Z.); liufh@mail.ustc.edu.cn (F.L.); zhangyufei@siom.ac.cn (Y.Z.); sccyq@mail.ustc.edu.cn (Y.C.) 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Bochubeilu, Hangzhou 310012, China; chenpeng@sio.org.cn 4 Department of Guanlan Ocean Science Satellites, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; jwtang@qnlm.ac 5 Institute for Advanced Ocean Study, College of Information Science and Engineering, Ocean Remote Sensing Institute, Ocean University of China, Qingdao 266100, China; wush@ouc.edu.cn 6 Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China 7 Shanghai Daheng Optics and Fine Mechanics Co., Ltd., Shanghai 201821, China; leekp@mail.ustc.edu.cn * Correspondence: heyan@siom.ac.cn

[1]  L Wang,et al.  MCML--Monte Carlo modeling of light transport in multi-layered tissues. , 1995, Computer methods and programs in biomedicine.

[2]  Y. B. Acharya,et al.  Signal induced noise in PMT detection of lidar signals , 2004 .

[3]  A. Morel Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) , 1988 .

[4]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[5]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[6]  M. Perry,et al.  Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters , 1989 .

[7]  André Morel,et al.  Light and marine photosynthesis: a spectral model with geochemical and climatological implications , 1991 .

[8]  Deric J Gray,et al.  Using a multiwavelength LiDAR for improved remote sensing of natural waters. , 2015, Applied optics.

[9]  Yongxiang Hu,et al.  Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements. , 2016, Optics express.

[10]  M. Gregg,et al.  Surface mixed and mixing layer depths , 1995 .

[11]  James H. Churnside,et al.  Review of profiling oceanographic lidar , 2013 .

[12]  Deying Chen,et al.  Depth resolution improvement of streak tube imaging lidar system using three laser beams , 2018 .

[13]  G. Kattawar,et al.  Filling in of Fraunhofer lines in the ocean by Raman scattering. , 1992, Applied optics.

[15]  C. McClain A decade of satellite ocean color observations. , 2009, Annual review of marine science.

[16]  A. Morel Optical properties of pure water and pure sea water , 1974 .

[17]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[18]  Xiaomei Lu,et al.  Subsurface Ocean Signals from an Orbiting Polarization Lidar , 2013, Remote. Sens..

[19]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[20]  L. Prieur,et al.  Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1 , 1981 .

[21]  Jie Liu,et al.  Concept Design of the “Guanlan” Science Mission: China’s Novel Contribution to Space Oceanography , 2019, Front. Mar. Sci..

[22]  Y Zhao,et al.  Signal-induced fluorescence in photomultipliers in differential absorption lidar systems. , 1999, Applied optics.

[23]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[24]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[25]  Yongxiang Hu Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements , 2009 .

[26]  A. Morel,et al.  Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote‐sensing applications , 1989 .

[27]  Linda Mullen,et al.  Characterization of signal-induced artifacts in photomultiplier tubes for underwater lidar applications , 1999, Optics & Photonics.

[28]  E. Boss,et al.  Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission , 2013 .

[29]  Y. Sasano,et al.  Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations. , 1989, Applied optics.

[30]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[31]  Tinglu Zhang,et al.  Analysis of the Optimal Wavelength for Oceanographic Lidar at the Global Scale Based on the Inherent Optical Properties of Water , 2019, Remote. Sens..

[32]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[33]  D. Donovan,et al.  Correction for nonlinear photon-counting effects in lidar systems. , 1993, Applied optics.

[34]  K. Moffett,et al.  Remote Sens , 2015 .

[35]  A. Omar,et al.  Antarctic spring ice-edge blooms observed from space by ICESat-2 , 2020 .

[36]  Xiaoquan Song,et al.  Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations , 2013, Remote. Sens..

[37]  Jun Zhang,et al.  Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications. , 2017, Optics express.