High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C

Fabricating inorganic–organic hybrid perovskite solar cells (PSCs) on plastic substrates broadens their scope for implementation in real systems by imparting portability, conformability and allowing high-throughput production, which is necessary for lowering costs. Here we report a new route to prepare highly dispersed Zn2SnO4 (ZSO) nanoparticles at low-temperature (<100 °C) for the development of high-performance flexible PSCs. The introduction of the ZSO film significantly improves transmittance of flexible polyethylene naphthalate/indium-doped tin oxide (PEN/ITO)-coated substrate from ∼75 to ∼90% over the entire range of wavelengths. The best performing flexible PSC, based on the ZSO and CH3NH3PbI3 layer, exhibits steady-state power conversion efficiency (PCE) of 14.85% under AM 1.5G 100 mW·cm−2 illumination. This renders ZSO a promising candidate as electron-conducting electrode for the highly efficient flexible PSC applications.

[1]  Dong Wook Kim,et al.  Controlled interfacial electron dynamics in highly efficient Zn2 SnO4 -based dye-sensitized solar cells. , 2014, ChemSusChem.

[2]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[3]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[4]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[5]  Bert Conings,et al.  An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells , 2014 .

[6]  W. P. Mulligan,et al.  Search for improved transparent conducting oxides: A fundamental investigation of CdO, Cd2SnO4, and Zn2SnO4 , 2000 .

[7]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[8]  Dong Wook Kim,et al.  Synthesis and photovoltaic property of fine and uniform Zn2SnO4 nanoparticles. , 2012, Nanoscale.

[9]  Seong Sik Shin,et al.  Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells , 2014 .

[10]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[11]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[12]  Bin Zhao,et al.  Synthesis of hierarchy ZnO by a template-free method and its photocatalytic activity , 2010 .

[13]  Xianzhi Fu,et al.  Hydrothermal synthesis, characterization, and photocatalytic properties of Zn2SnO4 , 2009 .

[14]  Qi-yuan Chen,et al.  Predominance diagrams for Zn(II)–NH3–Cl−−H2O system , 2013 .

[15]  Aram Amassian,et al.  High‐Performance ZnO Transistors Processed Via an Aqueous Carbon‐Free Metal Oxide Precursor Route at Temperatures Between 80–180 °C , 2013, Advanced materials.

[16]  J. M. Kim,et al.  A Chemical Route to Large-Scale Preparation of Spherical and Monodisperse Ni Powders , 2005 .

[17]  E. Kyuno,et al.  Derivatographic Studies on Transition Metal Complexes. XIII. Thermal Decomposition of [Ni(N2H4)6]X2 Complexes , 1974 .

[18]  Wenjun Zhang,et al.  Transformation Process and Photocatalytic Activities of Hydrothermally Synthesized Zn2SnO4 Nanocrystals , 2008 .

[19]  K. Suh,et al.  Two-layer hybrid anti-reflection film prepared on the plastic substrates , 2002 .

[20]  F. Wypych,et al.  Intercalation and functionalization of zinc hydroxide nitrate with mono- and dicarboxylic acids. , 2005, Journal of colloid and interface science.

[21]  Y. Qian,et al.  Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles of ZnO. , 2005, The journal of physical chemistry. B.

[22]  Jae-Young Choi,et al.  Preparation of fine Ni powders from nickel hydrazine complex , 2006 .

[23]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[24]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[25]  M. Lee,et al.  Properties of hydrothermally synthesized Zn2SnO4 nanoparticles using Na2CO3 as a novel mineralizer , 2010 .

[26]  E. Çetinörgü,et al.  Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films , 2007 .

[27]  T. Coutts,et al.  CdS/CdTe thin-film solar cell with a zinc stannate buffer layer , 1999 .

[28]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[29]  O. Heavens Thin-film Optical Filters , 1986 .

[30]  A. Braibanti,et al.  Chains of complexes in the crystal structure of bishydrazine zinc chloride , 1963 .

[31]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[32]  Daeyeon Lee,et al.  All-nanoparticle thin-film coatings. , 2006, Nano letters.

[33]  Yiying Wu,et al.  Photoelectrochemical study of the band structure of Zn(2)SnO(4) prepared by the hydrothermal method. , 2009, Journal of the American Chemical Society.

[34]  A. Sabatini,et al.  The infra-red spectra of metal(II)-hydrazine complexes , 1963 .

[35]  C. Jacob,et al.  Transition metal complexes containing hydrazine and substituted hydrazines , 1996 .

[36]  D. Keszler,et al.  Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. , 2008, Journal of the American Chemical Society.

[37]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[38]  E. Alarousu,et al.  Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells , 2014 .

[39]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[40]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[41]  Yanfa Yan,et al.  Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films , 2002 .

[42]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[43]  Deren Yang,et al.  A simple hydrothermal route for synthesizing SnO2 quantum dots , 2006 .