Scalable Convergence Using Two-Level Deflation Preconditioning for the Helmholtz Equation

Recent research efforts aimed at iteratively solving the Helmholtz equation have focused on incorporating deflation techniques for accelerating the convergence of Krylov subpsace methods. The requi...

[1]  Cornelis Vuik,et al.  Accelerating the shifted Laplace preconditioner for the Helmholtz equation by multilevel deflation , 2016, J. Comput. Phys..

[2]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[3]  A. Pinkus On L1-Approximation , 1989 .

[4]  Eli Turkel,et al.  Iterative schemes for high order compact discretizations to the exterior Helmholtz equation , 2012 .

[5]  Y. Erlangga,et al.  ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION PRECONDITIONED BY SHIFTED LAPLACIAN , 2008 .

[6]  Y. Saad,et al.  Analysis of some Krylov subspace methods for normal matrices via approximation theory and convex optimization , 2008 .

[7]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[8]  Ronald B. Morgan,et al.  GMRES with Deflated Restarting , 2002, SIAM J. Sci. Comput..

[9]  Cornelis Vuik,et al.  On the convergence of shifted Laplace preconditioner combined with multilevel deflation , 2013, Numer. Linear Algebra Appl..

[10]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[11]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[12]  Martin J. Gander,et al.  Multigrid Methods for Helmholtz Problems: A Convergent Scheme in 1D Using Standard Components , 2013 .

[13]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[14]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[15]  Reinhard Nabben,et al.  On the Spectrum of Deflated Matrices with Applications to the Deflated Shifted Laplace Preconditioner for the Helmholtz Equation , 2018, SIAM J. Matrix Anal. Appl..

[16]  M. Donatelli A note on grid transfer operators for multigrid methods , 2008, 0807.2565.

[17]  A. H. Sheikh Development Of The Helmholtz Solver Based On A Shifted Laplace Preconditioner And A Multigrid Deflation Technique , 2014 .

[18]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[19]  Angela Kunoth,et al.  B-Spline-Based Monotone Multigrid Methods , 2007, SIAM J. Numer. Anal..