Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries

[1]  S. Cheng,et al.  LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures , 2021 .

[2]  YingHuang,et al.  Three–dimensional fiber network reinforced polymer electrolyte for dendrite–free all–solid–state lithium metal batteries , 2021 .

[3]  Zheng Zhang,et al.  MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries , 2021 .

[4]  I. Manke,et al.  A Highly Conductive COF@CNT Electrocatalyst Boosting Polysulfide Conversion for Li–S Chemistry , 2021, ACS Energy Letters.

[5]  Junxiong Wu,et al.  Recent advances in anode materials for potassium-ion batteries: A review , 2021, Nano Research.

[6]  Jinping Liu,et al.  Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries. , 2021, Angewandte Chemie.

[7]  Xiaoting Lin,et al.  An Air‐Stable and Li‐Metal‐Compatible Glass‐Ceramic Electrolyte enabling High‐Performance All‐Solid‐State Li Metal Batteries , 2021, Advanced materials.

[8]  Qiang Zhang,et al.  Review on Li Deposition in Working Batteries: From Nucleation to Early Growth , 2021, Advanced materials.

[9]  Yutao Li,et al.  Constructing Electronic and Ionic Dual Conductive Polymeric Interface in the Cathode for High‐Energy‐Density Solid‐State Batteries , 2020, Advanced Functional Materials.

[10]  Ying Bai,et al.  Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges , 2020 .

[11]  Xingyi Huang,et al.  Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries , 2020, Nano Research.

[12]  Jun Lu,et al.  Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries , 2020 .

[13]  Wei Liu,et al.  All‐Solid‐State Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnet‐Based Electrolyte , 2020, Advanced materials.

[14]  Yuegang Zhang,et al.  In Situ Self‐Assembly of Ordered Organic/Inorganic Dual‐Layered Interphase for Achieving Long‐Life Dendrite‐Free Li Metal Anodes in LiFSI‐Based Electrolyte , 2020, Advanced Functional Materials.

[15]  W. Lu,et al.  High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery , 2020, Journal of Energy Chemistry.

[16]  Chengyi Hou,et al.  Hierarchical Composite‐Solid‐Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultra‐Stable Lithium Batteries , 2020, Advanced Functional Materials.

[17]  Henghui Zhou,et al.  Thiol‐Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium‐Metal Batteries , 2020, Advanced materials.

[18]  Chibueze V. Amanchukwu,et al.  Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries , 2020, Nature Energy.

[19]  Henghui Xu,et al.  Reaction Mechanism Optimization of Solid‐State Li–S Batteries with a PEO‐Based Electrolyte , 2020, Advanced Functional Materials.

[20]  Xiulin Fan,et al.  Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries , 2020, Nature Energy.

[21]  Kun Dong,et al.  A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid‐State Lithium Metal Batteries , 2020, Advanced materials.

[22]  Darren H. S. Tan,et al.  From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries , 2020, Nature Nanotechnology.

[23]  L. Archer,et al.  Rechargeable Lithium Metal Batteries with an In‐Built Solid‐State Polymer Electrolyte and a High Voltage/Loading Ni‐Rich Layered Cathode , 2020, Advanced materials.

[24]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[25]  Michael E. Ziebel,et al.  A Single‐Ion Conducting Borate Network Polymer as a Viable Quasi‐Solid Electrolyte for Lithium Metal Batteries , 2020, Advanced materials.

[26]  Henghui Xu,et al.  Fast Li+ Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte. , 2020, Journal of the American Chemical Society.

[27]  Lu Huang,et al.  Synchronous Healing of Li Metal Anode via Asymmetrical Bidirectional Current , 2019, iScience.

[28]  S. Qiu,et al.  High Uptake and Fast Transportation of LiPF6 in Porous Aromatic Framework for Solid-State Li-Ion Batteries. , 2019, Angewandte Chemie.

[29]  Lixia Yuan,et al.  Ultrathin, Flexible Polymer Electrolyte for Cost‐Effective Fabrication of All‐Solid‐State Lithium Metal Batteries , 2019, Advanced Energy Materials.

[30]  Eric J. Dufek,et al.  Glassy Li metal anode for high-performance rechargeable Li batteries , 2019, Nature Materials.

[31]  Henghui Xu,et al.  High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide) , 2019, Proceedings of the National Academy of Sciences.

[32]  Xiaoting Lin,et al.  High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes , 2019, Nano Energy.

[33]  Yi Cui,et al.  Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries , 2019, Nature Communications.

[34]  Aijun Li,et al.  Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte , 2019, Nano Energy.

[35]  Shubin Yang,et al.  Dendrite‐Free Lithium Anodes with Ultra‐Deep Stripping and Plating Properties Based on Vertically Oriented Lithium–Copper–Lithium Arrays , 2019, Advanced materials.

[36]  Ya‐Xia Yin,et al.  Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. , 2019, Journal of the American Chemical Society.

[37]  Xiaokun Zhang,et al.  Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries , 2019, Nature Nanotechnology.

[38]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[39]  H. Oguchi,et al.  A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries , 2019, Nature Communications.

[40]  Yang Shen,et al.  Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes , 2019, Advanced materials.

[41]  Yutao Li,et al.  Double‐Layer Polymer Electrolyte for High‐Voltage All‐Solid‐State Rechargeable Batteries , 2018, Advanced materials.

[42]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[43]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[44]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[45]  A. C. Lopes,et al.  Electroactive phases of poly(vinylidene fluoride) : determination, processing and applications , 2014 .

[46]  S. Emmert,et al.  Electrode polarization effects in broadband dielectric spectroscopy , 2011, 1106.1380.

[47]  M. Armand,et al.  Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents , 2011 .

[48]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[49]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[50]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[51]  S. Bunte,et al.  Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field , 2000 .

[52]  Bin Li,et al.  3D printing dendrite-free lithium anodes based on the nucleated MXene arrays , 2020 .

[53]  Hui Wu,et al.  One-pot solution coating of high quality LiF layer to stabilize Li metal anode , 2019, Energy Storage Materials.

[54]  N. Wu,et al.  High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes , 2018 .

[55]  Yusong Zhu,et al.  A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries , 2014 .