Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite

Abstract The influence of Cr doping on magnetic, magnetocaloric and electrical properties in a polycrystalline sample of Pr0.7Ca0.3MnO3 is investigated. Structural studies show that our samples are single phase. The magnetization shows that the Pr0.7Ca0.3Mn1−xCrxO3 ceramics exhibit a paramagnetic–ferromagnetic transition with a large magnetic entropy change. The relative cooling power (RCP) values are comparable to those of other manganite. DC conductance GDC measurements show that all samples are characterized by a semiconductor behavior. It is found that GDC decreases by two decades when increasing chromium concentrations. For the parent compound, dc-conductance is characterized by the appearance of a saturation region at a specific temperature (Tsat = 200 K). For the doped compound, Tsat go beyond room temperature. Conduction mechanism is found to be dominated by the small polaron hopping (SPH) process at high temperature and by variable range hopping one (VRH) at low temperature. AC conductance study confirms that the conductivity is governed by hopping process and obeys to the Jonscher universal power law. The exponent ‘n’ variation with temperature is in good agreement with Mott theory. Its variation as a function of chromium content indicates that the material turns from metallic to semi-insulating behavior when chromium composition increases. Impedance analysis proves the presence of electrical relaxation phenomenon in the material and confirms that grain boundaries played a main role in the conduction process.

[1]  R. M’nassri,et al.  Magnetocaloric Effects in Pr0.6−xErxSr0.4MnO3 (0.0≤x≤0.2) Manganese Oxides , 2013 .

[2]  M. Koubaa,et al.  Effect of strontium substitution on the physical properties of Nd0.5Ca0.5−xSrxMnO3(0.0≤x≤0.5) manganites , 2012 .

[3]  J. Barclay Active and passive magnetic regenerators in gas/magnetic refrigerators , 1994 .

[4]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[5]  Interplay between double-exchange, superexchange, and Lifshitz localization in doped manganites , 2001, cond-mat/0111244.

[6]  Cox,et al.  Simultaneous structural, magnetic, and electronic transitions in La1-xCaxMnO3 with x=0.25 and 0.50. , 1995, Physical review letters.

[7]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .

[8]  A. Dhahri,et al.  The effect of tin addition on the electrical conductivity of Sn-doped LaBaMnO3 , 2014 .

[9]  L. Smart,et al.  Solid State Chemistry: An Introduction, Third Edition , 1995 .

[10]  Youwei Du,et al.  Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides , 1997 .

[11]  R. M’nassri,et al.  3D-Ising ferromagnetic characteristics and magnetocaloric study in Pr0.4Eu0.2Sr0.4MnO3 manganite , 2015 .

[12]  M. Koubaa,et al.  Structural, magnetic and magnetocaloric properties of La0.8Ca0.2−xNaxMnO3 manganites (0≤x≤0.2) , 2015 .

[13]  K. Khirouni,et al.  Effects of iron concentrations on the electrical properties of La0.67Ba0.33Mn1−xFexO3 , 2013 .

[14]  S. E. Muthu,et al.  Effect of hydrostatic pressure on magnetic and magnetocaloric properties of Mn-site doped perovskite manganites Pr0.6Ca0.4Mn0.96B0.04O3 (B=Co and Cr) , 2014 .

[15]  Zhengge Wang,et al.  Magnetic entropy change in perovskite manganites La0.65Nd0.05Ca0.3Mn0.9B0.1O3 (B=Mn, Cr, Fe) , 2001 .

[16]  W. Cheikhrouhou-Koubaa,et al.  Magnetocaloric effect near room temperature in (1 − y)La0.8Ca0.05K0.15MnO3/yLa0.8K0.2MnO3 composites , 2014 .

[17]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[18]  Littlewood,et al.  Double exchange alone does not explain the resistivity of La1-xSrxMnO3. , 1995, Physical review letters.

[19]  R. Jemai,et al.  Titanium effects on the transport properties in La0.7Sr0.3Mn1 − xTixO3 , 2010 .

[20]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[21]  Run‐Wei Li,et al.  Magnetic properties and colossal magnetoresistance of the perovskites La2/3Ca1/3Mn1−xTixO3 , 2000 .

[22]  A. Millis Lattice effects in magnetoresistive manganese perovskites , 1998, Nature.

[23]  P. Vanitha,et al.  Distinction between Two Types of Charge-Ordered States in the Rare Earth Manganates,Ln0.5A0.5MnO3, Based on Chemical Melting , 1998 .

[24]  R. Jemai,et al.  Admittance spectroscopy and complex impedance analysis of Ti-modified La0.7Sr0.3MnO3 , 2008 .

[25]  R. M’nassri,et al.  Magnetocaloric Effect in LaFe10.7Co0.8Si1.5 Compound Near Room Temperature , 2014 .

[26]  R. M’nassri,et al.  Magnetocaloric Effect in Different Impurity Doped La0.67Ca0.33MnO3 Composite , 2014 .

[27]  R. Jemai,et al.  Electrical conductivity and complex impedance analysis of 20% Ti-doped La0.7Sr0.3MnO3 perovskite , 2007 .

[28]  R. Bentley Ogston and the development of prochirality theory , 1978, Nature.

[29]  W. Cheikhrouhou-Koubaa,et al.  Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr0.7Ca0.3Mn0.95X0.05O3 (Cr, Ni, Co and Fe) manganites , 2015 .

[30]  A. Cheikhrouhou,et al.  Effect of quenching on magnetic properties of polycrystalline Pr0.5Sr0.5MnO3 perovskite manganite , 2001 .

[31]  R. M’nassri,et al.  Effect of barium-deficiency on the structural, magnetic, and magnetocaloric properties of La0.6Sr0.2Ba0.2−x◻xMnO3 (0 ≤ x ≤ 0.15) , 2013 .

[32]  J. Miao,et al.  Effect of sintering temperature on electrical transport of La0.67Ca0.33MnO3 granular system with 4% CuO addition , 2008 .

[33]  C. Ong,et al.  Effect of Fe doping on the magnetotransport properties in Nd0.67Sr0.33MnO3 manganese oxides , 2002 .

[34]  W. Cheikhrouhou-Koubaa,et al.  The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−xCoxO3 manganites , 2015 .

[35]  M. Hervieu,et al.  CMR properties of Cr-doped Mn(IV)-rich manganites Ca1-xSmxMnO3 , 1998 .

[36]  J. MacManus‐Driscoll,et al.  Influence of oxygen vacancies on magnetoresistance properties of bulk La0.67Ca0.33MnO3−δ , 1999 .

[37]  A. Cheikhrouhou,et al.  Effect of Quenching on Magnetoresistance Properties in the Pr0.5Sr0.5MnO3 Perovskite Manganite , 2002 .

[38]  H. Srikanth,et al.  Structure, magnetic, and magnetocaloric properties of amorphous and crystalline La0.4Ca0.6MnO3+δ nanoparticles , 2012 .

[39]  M. Phan,et al.  Large magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal , 2004 .

[40]  K. Khirouni,et al.  Chromium effects on the transport properties in La0.7Sr0.3Mn1−xCrxO3 , 2012 .

[41]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[42]  C. Moure,et al.  Magnetic properties of Mn-substituted GdCoxMn1−xO3 and LaCoxMn1−xO3 , 2008 .

[43]  J. Goodenough,et al.  Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3 , 1961 .

[44]  U. Rößler,et al.  Effect of Ga doping for Mn on the magnetic properties of La0.67Ca0.33MnO3 , 2002 .

[45]  M. Lethiecq,et al.  Dielectric properties of hexagonal perovskite ceramics prepared by different routes , 2012 .

[46]  R. M’nassri,et al.  Magnetocaloric properties in ordered double-perovskite Ba2Fe1−xCrxMoO6 (0 ≤ x ≤ 1) , 2014 .

[47]  Vitalij K. Pecharsky,et al.  Gd5(SixGe1–x)4: An Extremum Material , 2001 .

[48]  R. M’nassri,et al.  Evolution of Magnetocaloric Behavior in Oxygen Deficient La2/3Ba1/3MnO3−δ Manganites , 2014 .

[49]  M. Oumezzine,et al.  Effect of iron substitution on the structural, magnetic and magnetocaloric properties of Pr0.6Ca0.1Sr0.3Mn1−xFexO3 (0⩽x⩽0.075) manganites , 2014 .

[50]  R. M’nassri,et al.  Impact of sintering temperature on the magnetic and magnetocaloric properties in Pr0.5Eu0.1Sr0.4MnO3 manganites , 2015 .

[51]  M. Koubaa,et al.  Magnetic and magnetocaloric properties of Pr0.6-xEuxSr0.4MnO3 manganese oxides , 2011 .

[52]  Fangwei Wang,et al.  Magnetic and transport properties of layered La1.2Sr1.8Mn2 - xTxO7 (T = Fe, Co, Cr) , 2000 .