Deformable random dot markers

We extend planar fiducial markers using random dots [8] to nonrigidly deformable markers. Because the recognition and tracking of random dot markers are based on keypoint matching, we can estimate the deformation of the markers with nonrigid surface detection from keypoint correspondences. First, the initial pose of the markers is computed from a homography with RANSAC as a planar detection. Second, deformations are estimated from the minimization of a cost function for deformable surface fitting. We show augmentation results of 2D surface deformation recovery with several markers.

[1]  Mark Fiala,et al.  ARTag, a fiducial marker system using digital techniques , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[2]  Masakazu Iwamura,et al.  Use of Affine Invariants in Locally Likely Arrangement Hashing for Camera-Based Document Image Retrieval , 2006, Document Analysis Systems.

[3]  Michael R. Lyu,et al.  Progressive Finite Newton Approach To Real-time Nonrigid Surface Detection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Eric Foxlin,et al.  Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker , 2002, Proceedings. International Symposium on Mixed and Augmented Reality.

[5]  Vincent Lepetit,et al.  Fast Non-Rigid Surface Detection, Registration and Realistic Augmentation , 2008, International Journal of Computer Vision.

[6]  Hirokazu Kato,et al.  Marker tracking and HMD calibration for a video-based augmented reality conferencing system , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).

[7]  Hideyuki Tamura,et al.  MR Platform: a basic body on which mixed reality applications are built , 2002, Proceedings. International Symposium on Mixed and Augmented Reality.

[8]  Hideo Saito,et al.  Random dot markers , 2011, 2011 IEEE Virtual Reality Conference.

[9]  Andrew Zisserman,et al.  Direct Estimation of Non-Rigid Registrations , 2004 .

[10]  Dieter Schmalstieg,et al.  Robust and unobtrusive marker tracking on mobile phones , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[11]  Jun Rekimoto,et al.  Matrix: a realtime object identification and registration method for augmented reality , 1998, Proceedings. 3rd Asia Pacific Computer Human Interaction (Cat. No.98EX110).