From distributed machine learning to federated learning: a survey

[1]  Mohsen Guizani,et al.  Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints , 2022, IEEE Transactions on Network Science and Engineering.

[2]  Patrick Valduriez,et al.  Two-Phase Scheduling for Efficient Vehicle Sharing , 2022, IEEE Transactions on Intelligent Transportation Systems.

[3]  Zhenheng Tang,et al.  FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks , 2021, ArXiv.

[4]  Paolo Soda,et al.  An empirical study on the joint impact of feature selection and data resampling on imbalance classification , 2021, Applied Intelligence.

[5]  Suhas Diggavi,et al.  A Field Guide to Federated Optimization , 2021, ArXiv.

[6]  Chaoyang He,et al.  Federated Learning for Internet of Things , 2021, SenSys.

[7]  J. Honorio,et al.  Federated Myopic Community Detection with One-shot Communication , 2021, International Conference on Artificial Intelligence and Statistics.

[8]  Sirisha Rambhatla,et al.  Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling , 2021, KDD.

[9]  Chaoyang He,et al.  SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks , 2021, ArXiv.

[10]  Hongxia Yang,et al.  Federated Graph Learning - A Position Paper , 2021, ArXiv.

[11]  Hongzhi Wang,et al.  FL-AGCNS: Federated Learning Framework for Automatic Graph Convolutional Network Search , 2021, ArXiv.

[12]  Yu Wang,et al.  Adversarial Robustness under Long-Tailed Distribution , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Adam James Hall,et al.  PyVertical: A Vertical Federated Learning Framework for Multi-headed SplitNN , 2021, ArXiv.

[14]  Reza Rawassizadeh,et al.  FEDZIP: A Compression Framework for Communication-Efficient Federated Learning , 2021, ArXiv.

[15]  Ali Dehghantanha,et al.  A survey on security and privacy of federated learning , 2021, Future Gener. Comput. Syst..

[16]  Sin Kit Lo,et al.  Architectural Patterns for the Design of Federated Learning Systems , 2021, J. Syst. Softw..

[17]  Evgenia Novikova,et al.  Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis , 2020, Sensors.

[18]  Ang Li,et al.  GraphFL: A Federated Learning Framework for Semi-Supervised Node Classification on Graphs , 2020, 2022 IEEE International Conference on Data Mining (ICDM).

[19]  Chaochao Chen,et al.  Improving Federated Relational Data Modeling via Basis Alignment and Weight Penalty , 2020, ArXiv.

[20]  Li Wang,et al.  ASFGNN: Automated separated-federated graph neural network , 2020, Peer-to-Peer Networking and Applications.

[21]  Huajun Chen,et al.  FedE: Embedding Knowledge Graphs in Federated Setting , 2020, IJCKG.

[22]  Xuanzhe Liu,et al.  Hierarchical Federated Learning through LAN-WAN Orchestration , 2020, ArXiv.

[23]  Taeho Jung,et al.  Federated Dynamic GNN with Secure Aggregation , 2020, ArXiv.

[24]  Hangyu Zhu,et al.  From federated learning to federated neural architecture search: a survey , 2020, Complex & Intelligent Systems.

[25]  Qi Zhu,et al.  Addressing Class Imbalance in Federated Learning , 2020, AAAI.

[26]  Daniel J. Beutel,et al.  Flower: A Friendly Federated Learning Research Framework , 2020, 2007.14390.

[27]  Amir Salman Avestimehr,et al.  Group Knowledge Transfer: Collaborative Training of Large CNNs on the Edge , 2020, ArXiv.

[28]  Ramesh Raskar,et al.  FedML: A Research Library and Benchmark for Federated Machine Learning , 2020, ArXiv.

[29]  Yong Jiang,et al.  Backdoor Learning: A Survey , 2020, IEEE transactions on neural networks and learning systems.

[30]  Mehmet Emre Gursoy,et al.  Data Poisoning Attacks Against Federated Learning Systems , 2020, ESORICS.

[31]  Aryan Mokhtari,et al.  Federated Learning with Compression: Unified Analysis and Sharp Guarantees , 2020, AISTATS.

[32]  Qi Li,et al.  Enabling Execution Assurance of Federated Learning at Untrusted Participants , 2020, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications.

[33]  Yaoliang Yu,et al.  FedMGDA+: Federated Learning meets Multi-objective Optimization , 2020, ArXiv.

[34]  Jan Ramon,et al.  Distributed Differentially Private Averaging with Improved Utility and Robustness to Malicious Parties , 2020, ArXiv.

[35]  L. Golubchik,et al.  Backdoor Attacks on Federated Meta-Learning , 2020, ArXiv.

[36]  Sai Praneeth Karimireddy,et al.  Secure Byzantine-Robust Machine Learning , 2020, ArXiv.

[37]  Yonina C. Eldar,et al.  UVeQFed: Universal Vector Quantization for Federated Learning , 2020, IEEE Transactions on Signal Processing.

[38]  Nguyen H. Tran,et al.  Personalized Federated Learning with Moreau Envelopes , 2020, NeurIPS.

[39]  Tao Xiang,et al.  A training-integrity privacy-preserving federated learning scheme with trusted execution environment , 2020, Inf. Sci..

[40]  Ziqi Liu,et al.  Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification , 2020, IJCAI.

[41]  Yanjie Fu,et al.  MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning , 2020, ACM Trans. Knowl. Discov. Data.

[42]  Quanquan Gu,et al.  Exploring Private Federated Learning with Laplacian Smoothing , 2020, ArXiv.

[43]  Yonina C. Eldar,et al.  Federated Learning with Quantization Constraints , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[44]  Xinjian Luo,et al.  Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning , 2020, ArXiv.

[45]  Christopher Briggs,et al.  Federated learning with hierarchical clustering of local updates to improve training on non-IID data , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[46]  Max Mühlhäuser,et al.  Enhancing Privacy via Hierarchical Federated Learning , 2020, 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).

[47]  Michael Moeller,et al.  Inverting Gradients - How easy is it to break privacy in federated learning? , 2020, NeurIPS.

[48]  Mehrdad Mahdavi,et al.  Adaptive Personalized Federated Learning , 2020, ArXiv.

[49]  Haishan Ye,et al.  MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Masatoshi Yoshikawa,et al.  FedSel: Federated SGD under Local Differential Privacy with Top-k Dimension Selection , 2020, DASFAA.

[51]  Milind Kulkarni,et al.  Survey of Personalization Techniques for Federated Learning , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[52]  Mohamad Mounir Safadieh,et al.  Policy-Based Federated Learning , 2020 .

[53]  Jing Jiang,et al.  Decentralized Knowledge Acquisition for Mobile Internet Applications , 2020, World Wide Web.

[54]  Yaochu Jin,et al.  Ternary Compression for Communication-Efficient Federated Learning , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[55]  Han Yu,et al.  Threats to Federated Learning: A Survey , 2020, ArXiv.

[56]  Haijian Sun,et al.  Adaptive Federated Learning With Gradient Compression in Uplink NOMA , 2020, IEEE Transactions on Vehicular Technology.

[57]  Xu Chen,et al.  HFEL: Joint Edge Association and Resource Allocation for Cost-Efficient Hierarchical Federated Edge Learning , 2020, IEEE Transactions on Wireless Communications.

[58]  Yasaman Khazaeni,et al.  Federated Learning with Matched Averaging , 2020, ICLR.

[59]  Ming Li,et al.  Wireless Federated Learning with Local Differential Privacy , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[60]  Siwei Feng,et al.  Multi-Participant Multi-Class Vertical Federated Learning , 2020, ArXiv.

[61]  Tianjian Chen,et al.  FedVision: An Online Visual Object Detection Platform Powered by Federated Learning , 2020, AAAI.

[62]  Bo Zhao,et al.  iDLG: Improved Deep Leakage from Gradients , 2020, ArXiv.

[63]  Zaïd Harchaoui,et al.  Robust Aggregation for Federated Learning , 2019, IEEE Transactions on Signal Processing.

[64]  Xiaoyan Sun,et al.  Communication-Efficient Federated Deep Learning With Layerwise Asynchronous Model Update and Temporally Weighted Aggregation , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[65]  Yang Liu,et al.  A Communication Efficient Collaborative Learning Framework for Distributed Features , 2019 .

[66]  Tim Verbelen,et al.  A Survey on Distributed Machine Learning , 2019, ACM Comput. Surv..

[67]  Richard Nock,et al.  Advances and Open Problems in Federated Learning , 2019, Found. Trends Mach. Learn..

[68]  Sunav Choudhary,et al.  Federated Learning with Personalization Layers , 2019, ArXiv.

[69]  Lyes Khoukhi,et al.  Co-IoT: A Collaborative DDoS Mitigation Scheme in IoT Environment Based on Blockchain Using SDN , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[70]  Shijun Liu,et al.  SGNN: A Graph Neural Network Based Federated Learning Approach by Hiding Structure , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[71]  Min Du,et al.  Free-riders in Federated Learning: Attacks and Defenses , 2019, ArXiv.

[72]  Haoyi Xiong,et al.  SecureGBM: Secure Multi-Party Gradient Boosting , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[73]  Jinyuan Jia,et al.  Local Model Poisoning Attacks to Byzantine-Robust Federated Learning , 2019, USENIX Security Symposium.

[74]  Ananda Theertha Suresh,et al.  Can You Really Backdoor Federated Learning? , 2019, ArXiv.

[75]  Peter B. Walker,et al.  Federated Learning for Healthcare Informatics , 2019, Journal of Healthcare Informatics Research.

[76]  Kalikinkar Mandal,et al.  PrivFL: Practical Privacy-preserving Federated Regressions on High-dimensional Data over Mobile Networks , 2019, IACR Cryptol. ePrint Arch..

[77]  H. Vincent Poor,et al.  Federated Learning With Differential Privacy: Algorithms and Performance Analysis , 2019, IEEE Transactions on Information Forensics and Security.

[78]  Nikhil R. Devanur,et al.  PipeDream: generalized pipeline parallelism for DNN training , 2019, SOSP.

[79]  Yang Liu,et al.  Abnormal Client Behavior Detection in Federated Learning , 2019, ArXiv.

[80]  Boi Faltings,et al.  Federated Generative Privacy , 2019, IEEE Intelligent Systems.

[81]  Sashank J. Reddi,et al.  SCAFFOLD: Stochastic Controlled Averaging for Federated Learning , 2019, ICML.

[82]  Chaochao Chen,et al.  Quantification of the Leakage in Federated Learning , 2019, ArXiv.

[83]  Ji Liu,et al.  Central Server Free Federated Learning over Single-sided Trust Social Networks , 2019, ArXiv.

[84]  Yanjun Ma,et al.  PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice , 2019 .

[85]  Wei Yang Bryan Lim,et al.  Federated Learning in Mobile Edge Networks: A Comprehensive Survey , 2019, IEEE Communications Surveys & Tutorials.

[86]  Yi Zhou,et al.  Towards Federated Graph Learning for Collaborative Financial Crimes Detection , 2019, ArXiv.

[87]  Kenneth T. Co,et al.  Byzantine-Robust Federated Machine Learning through Adaptive Model Averaging , 2019, ArXiv.

[88]  Deniz Gündüz,et al.  Hierarchical Federated Learning ACROSS Heterogeneous Cellular Networks , 2019, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[89]  Baris Can Cam,et al.  Imbalance Problems in Object Detection: A Review , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[90]  Anit Kumar Sahu,et al.  Federated Learning: Challenges, Methods, and Future Directions , 2019, IEEE Signal Processing Magazine.

[91]  Jingyan Jiang,et al.  Decentralized Federated Learning: A Segmented Gossip Approach , 2019, ArXiv.

[92]  Yusuke Fukazawa,et al.  Real-time On-Device Troubleshooting Recommendation for Smartphones , 2019, KDD.

[93]  Bingsheng He,et al.  A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection , 2019, IEEE Transactions on Knowledge and Data Engineering.

[94]  Wei Wang,et al.  CMFL: Mitigating Communication Overhead for Federated Learning , 2019, 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).

[95]  Hamido Fujita,et al.  Multi-Imbalance: An open-source software for multi-class imbalance learning , 2019, Knowl. Based Syst..

[96]  Jiong Jin,et al.  Towards Fair and Privacy-Preserving Federated Deep Models , 2019, IEEE Transactions on Parallel and Distributed Systems.

[97]  Tian Li,et al.  Fair Resource Allocation in Federated Learning , 2019, ICLR.

[98]  Yasaman Khazaeni,et al.  Bayesian Nonparametric Federated Learning of Neural Networks , 2019, ICML.

[99]  Anit Kumar Sahu,et al.  MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling , 2019, 2019 Sixth Indian Control Conference (ICC).

[100]  S. H. Song,et al.  Client-Edge-Cloud Hierarchical Federated Learning , 2019, ICC 2020 - 2020 IEEE International Conference on Communications (ICC).

[101]  Guan Wang,et al.  Interpret Federated Learning with Shapley Values , 2019, ArXiv.

[102]  Haomiao Yang,et al.  Towards Efficient and Privacy-Preserving Federated Deep Learning , 2019, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[103]  D. Dou,et al.  Scalable Differential Privacy with Certified Robustness in Adversarial Learning , 2019, ICML.

[104]  Vladimir Braverman,et al.  Communication-efficient distributed SGD with Sketching , 2019, NeurIPS.

[105]  Hubert Eichner,et al.  Towards Federated Learning at Scale: System Design , 2019, SysML.

[106]  Anastasios Kyrillidis,et al.  Compressing Gradient Optimizers via Count-Sketches , 2019, ICML.

[107]  Mehryar Mohri,et al.  Agnostic Federated Learning , 2019, ICML.

[108]  Tara Javidi,et al.  Peer-to-peer Federated Learning on Graphs , 2019, ArXiv.

[109]  Qiang Yang,et al.  Federated Machine Learning , 2019, ACM Trans. Intell. Syst. Technol..

[110]  Martin Jaggi,et al.  Error Feedback Fixes SignSGD and other Gradient Compression Schemes , 2019, ICML.

[111]  Anit Kumar Sahu,et al.  Federated Optimization in Heterogeneous Networks , 2018, MLSys.

[112]  Rui Zhang,et al.  A Hybrid Approach to Privacy-Preserving Federated Learning , 2018, Informatik Spektrum.

[113]  Yang Song,et al.  Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning , 2018, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[114]  Sebastian Caldas,et al.  LEAF: A Benchmark for Federated Settings , 2018, ArXiv.

[115]  Prateek Mittal,et al.  Analyzing Federated Learning through an Adversarial Lens , 2018, ICML.

[116]  Quoc V. Le,et al.  GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism , 2018, NeurIPS.

[117]  Daniel Rueckert,et al.  A generic framework for privacy preserving deep learning , 2018, ArXiv.

[118]  Chongsheng Zhang,et al.  An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme , 2018, Knowl. Based Syst..

[119]  Michael G. Rabbat,et al.  Stochastic Gradient Push for Distributed Deep Learning , 2018, ICML.

[120]  Sebastian Caldas,et al.  Expanding the Reach of Federated Learning by Reducing Client Resource Requirements , 2018, ArXiv.

[121]  Martin Jaggi,et al.  Sparsified SGD with Memory , 2018, NeurIPS.

[122]  Ivan Beschastnikh,et al.  Mitigating Sybils in Federated Learning Poisoning , 2018, ArXiv.

[123]  Vitaly Shmatikov,et al.  How To Backdoor Federated Learning , 2018, AISTATS.

[124]  Lalana Kagal,et al.  Explaining Explanations: An Overview of Interpretability of Machine Learning , 2018, 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA).

[125]  Tong Yang,et al.  SketchML: Accelerating Distributed Machine Learning with Data Sketches , 2018, SIGMOD Conference.

[126]  Vitaly Shmatikov,et al.  Exploiting Unintended Feature Leakage in Collaborative Learning , 2018, 2019 IEEE Symposium on Security and Privacy (SP).

[127]  Shiho Moriai,et al.  Privacy-Preserving Deep Learning via Additively Homomorphic Encryption , 2018, IEEE Transactions on Information Forensics and Security.

[128]  Wei Shi,et al.  Federated learning of predictive models from federated Electronic Health Records , 2018, Int. J. Medical Informatics.

[129]  Tassilo Klein,et al.  Differentially Private Federated Learning: A Client Level Perspective , 2017, ArXiv.

[130]  Richard Nock,et al.  Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption , 2017, ArXiv.

[131]  Marta Mattoso,et al.  Efficient Scheduling of Scientific Workflows Using Hot Metadata in a Multisite Cloud , 2017, IEEE Transactions on Knowledge and Data Engineering.

[132]  Wei Cheng,et al.  Multi-party Sparse Discriminant Learning , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[133]  Chongsheng Zhang,et al.  Feature selection and resampling in class imbalance learning: Which comes first? An empirical study in the biological domain , 2017, 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[134]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[135]  H. Brendan McMahan,et al.  Learning Differentially Private Recurrent Language Models , 2017, ICLR.

[136]  Dhabaleswar K. Panda,et al.  Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL? , 2017, EuroMPI.

[137]  Wei Zhang,et al.  Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent , 2017, NIPS.

[138]  Gregory Cohen,et al.  EMNIST: Extending MNIST to handwritten letters , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[139]  Giuseppe Ateniese,et al.  Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning , 2017, CCS.

[140]  Marta Mattoso,et al.  Managing hot metadata for scientific workflows on multisite clouds , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[141]  Peter Richtárik,et al.  Federated Learning: Strategies for Improving Communication Efficiency , 2016, ArXiv.

[142]  Marc Tommasi,et al.  Decentralized Collaborative Learning of Personalized Models over Networks , 2016, AISTATS.

[143]  Marta Mattoso,et al.  Multi-objective scheduling of Scientific Workflows in multisite clouds , 2016, Future Gener. Comput. Syst..

[144]  Sebastian Nowozin,et al.  Oblivious Multi-Party Machine Learning on Trusted Processors , 2016, USENIX Security Symposium.

[145]  Ian Goodfellow,et al.  Deep Learning with Differential Privacy , 2016, CCS.

[146]  Abhinav Vishnu,et al.  Distributed TensorFlow with MPI , 2016, ArXiv.

[147]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[148]  Marta Mattoso,et al.  A Survey of Data-Intensive Scientific Workflow Management , 2015, Journal of Grid Computing.

[149]  Ferhat Özgür Çatak,et al.  Secure Multi-party Computation Based Privacy Preserving Extreme Learning Machine Algorithm Over Vertically Distributed Data , 2015, ICONIP.

[150]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[151]  Ali Sayed,et al.  Adaptation, Learning, and Optimization over Networks , 2014, Found. Trends Mach. Learn..

[152]  Brian M. Gaff,et al.  Privacy and Big Data , 2014, Computer.

[153]  Warren B. Chik,et al.  The Singapore Personal Data Protection Act and an assessment of future trends in data privacy reform , 2013, Comput. Law Secur. Rev..

[154]  Carlos V. Rozas,et al.  Innovative instructions and software model for isolated execution , 2013, HASP '13.

[155]  Giovanni Felici,et al.  Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers , 2013, Int. J. Secur. Networks.

[156]  Dacheng Tao,et al.  A Survey on Multi-view Learning , 2013, ArXiv.

[157]  S. Karthik,et al.  A fault tolerent approach in scientific workflow systems based on cloud computing , 2013, 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering.

[158]  Ali H. Sayed,et al.  Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior , 2013, IEEE Signal Processing Magazine.

[159]  Ali H. Sayed,et al.  Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks , 2011, IEEE Transactions on Signal Processing.

[160]  Alexey Melnikov,et al.  The WebSocket Protocol , 2011, RFC.

[161]  Alexander J. Smola,et al.  Parallelized Stochastic Gradient Descent , 2010, NIPS.

[162]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[163]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[164]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[165]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[166]  Sean R Eddy,et al.  What is a hidden Markov model? , 2004, Nature Biotechnology.

[167]  Bohn Stafleu van Loghum,et al.  Online … , 2002, LOG IN.

[168]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[169]  E. Seneta,et al.  Towards consensus: some convergence theorems on repeated averaging , 1977, Journal of Applied Probability.

[170]  Michael J. Flynn,et al.  Some Computer Organizations and Their Effectiveness , 1972, IEEE Transactions on Computers.

[171]  H. Robbins A Stochastic Approximation Method , 1951 .

[172]  M. Annavaram,et al.  FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks , 2021, ArXiv.

[173]  Amir Salman Avestimehr,et al.  PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models , 2021, ICML.

[174]  Hao Peng,et al.  Federated Knowledge Graphs Embedding , 2021, ArXiv.

[175]  Chuhan Wu,et al.  A federated graph neural network framework for privacy-preserving personalization , 2021, Nature Communications.

[176]  Xiang Ren,et al.  FedNLP: A Research Platform for Federated Learning in Natural Language Processing , 2021, ArXiv.

[177]  Yang Liu,et al.  BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated Learning , 2020, USENIX ATC.

[178]  Hamed Haddadi,et al.  Efficient and Private Federated Learning using TEE , 2019 .

[179]  Seetha Hari,et al.  Learning From Imbalanced Data , 2019, Advances in Computer and Electrical Engineering.

[180]  Agustí Verde Parera,et al.  General data protection regulation , 2018 .

[181]  Ferhat Özgür Çatak,et al.  CPP-ELM: Cryptographically Privacy-Preserving Extreme Learning Machine for Cloud Systems , 2018, Int. J. Comput. Intell. Syst..

[182]  Shai Halevi,et al.  Homomorphic Encryption , 2017, Tutorials on the Foundations of Cryptography.

[183]  Misbah Liaqat,et al.  Federated cloud resource management: Review and discussion , 2017, J. Netw. Comput. Appl..

[184]  Christina Freytag,et al.  Using Mpi Portable Parallel Programming With The Message Passing Interface , 2016 .

[185]  Marilyn Smith,et al.  FIELD GUIDE , 1998 .

[186]  William Shakespeare,et al.  Complete Works of William Shakespeare , 1854 .

[187]  Vladimir Braverman,et al.  FetchSGD: Communication-Efficient Federated Learning with Sketching , 2022 .