A Unified IMEX Runge-Kutta Approach for Hyperbolic Systems with Multiscale Relaxation

In this paper we consider the development of Implicit-Explicit (IMEX) Runge--Kutta schemes for hyperbolic systems with multiscale relaxation. In such systems the scaling depends on an additional pa...

[1]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[2]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[3]  Giovanni Russo,et al.  On a Class of Uniformly Accurate IMEX Runge--Kutta Schemes and Applications to Hyperbolic Systems with Relaxation , 2009, SIAM J. Sci. Comput..

[4]  Tai-Ping Liu Hyperbolic conservation laws with relaxation , 1987 .

[5]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[6]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[7]  Lorenzo Pareschi,et al.  Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation , 2000, SIAM J. Numer. Anal..

[8]  N. SIAMJ. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .

[9]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[10]  Lorenzo Pareschi,et al.  Numerical schemes for kinetic equations in diffusive regimes , 1998 .

[11]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[12]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[13]  Tai Tsun Wu,et al.  A completely solvable model of the nonlinear Boltzmann equation , 1982 .

[14]  Benoît Perthame,et al.  Scaling limits for the Ruijgrok-Wu model of the Boltzmann equation , 2001 .

[15]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[16]  Giovanni Russo,et al.  Flux-Explicit IMEX Runge-Kutta Schemes for Hyperbolic to Parabolic Relaxation Problems , 2013, SIAM J. Numer. Anal..

[17]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[18]  G. Toscani,et al.  Diiusive Relaxation Schemes for Discrete-velocity Kinetic Equations , 2007 .

[19]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[20]  Lorenzo Pareschi,et al.  On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws , 2017, J. Comput. Appl. Math..

[21]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[22]  SEBASTIANO BOSCARINO Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..

[23]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[24]  Philippe G. LeFloch,et al.  High-Order Asymptotic-Preserving Methods for Fully Nonlinear Relaxation Problems , 2012, SIAM J. Sci. Comput..

[25]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[26]  Lorenzo Pareschi,et al.  Asymptotic-Preserving (Ap) Schemes for Multiscale Kinetic Equations: a Unified Approach , 2001 .

[27]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[28]  Sebastiano Boscarino,et al.  On an accurate third order implicit-explicit Runge--Kutta method for stiff problems , 2009 .

[29]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[30]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[31]  Wang Chi-Shu,et al.  Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws , 1997 .

[32]  G. Toscani,et al.  Relaxation Schemes for Nonlinear Kinetic Equations , 1997 .

[33]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[34]  Lorenzo Pareschi Characteristic-Based Numerical Schemes for Hyperbolic Systems With Nonlinear Relaxation , 1997 .

[35]  Philip L. Roe,et al.  Characteristic‐based schemes for dispersive waves I. The method of characteristics for smooth solutions , 1993 .

[36]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation I. Spurious Solutions , 1993, SIAM J. Appl. Math..