3D printed structures for modeling the Young's modulus of bamboo parenchyma.

[1]  Sarmiza Pencea,et al.  China , 2019, The Statesman’s Yearbook 2019.

[2]  Sardar Malek,et al.  Lightweight 3D cellular composites inspired by balsa , 2017, Bioinspiration & biomimetics.

[3]  Christopher A. Schuh,et al.  Mesostructure optimization in multi-material additive manufacturing: a theoretical perspective , 2017, Journal of Materials Science.

[4]  L. Gibson,et al.  Spatially-localized bench-top X-ray scattering reveals tissue-specific microfibril orientation in Moso bamboo , 2017, Plant Methods.

[5]  F. A. Silva,et al.  On the influence of Dendrocalamus giganteus bamboo microstructure on its mechanical behavior , 2016 .

[6]  F. Palombini,et al.  Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography , 2016 .

[7]  M. Habibi,et al.  Viscoelastic damping behavior of structural bamboo material and its microstructural origins , 2016 .

[8]  國合會系統管理者 Global Forest Resources Assessment , 2016 .

[9]  Elisabetta A. Matsumoto,et al.  Biomimetic 4D printing. , 2016, Nature materials.

[10]  C. Brodersen,et al.  New frontiers in the three-dimensional visualization of plant structure and function. , 2016, American journal of botany.

[11]  André R Studart,et al.  Additive manufacturing of biologically-inspired materials. , 2016, Chemical Society reviews.

[12]  Randall M. Erb,et al.  Designing bioinspired composite reinforcement architectures via 3D magnetic printing , 2015, Nature Communications.

[13]  Wen-Shao Chang,et al.  Density distribution profile for internodes and nodes of Phyllostachys edulis (Moso bamboo) by computer tomography scanning , 2015 .

[14]  Bhavna Sharma,et al.  Engineered bamboo: state of the art , 2015 .

[15]  Nima Rahbar,et al.  Molecular Origin of Strength and Stiffness in Bamboo Fibrils , 2015, Scientific Reports.

[16]  Jian Lu,et al.  Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms. , 2015, Acta biomaterialia.

[17]  I. Burgert,et al.  Plant material features responsible for bamboo's excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. , 2014, Annals of botany.

[18]  L. Gibson,et al.  The structure and mechanics of Moso bamboo material , 2014, Journal of The Royal Society Interface.

[19]  Zehui Jiang,et al.  Effect of Fiber on Tensile Properties of Moso Bamboo , 2014 .

[20]  J. Lewis,et al.  3D‐Printing of Lightweight Cellular Composites , 2014, Advanced materials.

[21]  Francesco De Carlo,et al.  TomoPy: a framework for the analysis of synchrotron tomographic data , 2014, Optics & Photonics - Optical Engineering + Applications.

[22]  Huang-fei Lv,et al.  Variation in the Cell Wall Mechanical Properties of Dendrocalamus farinosus Bamboo by Nanoindentation , 2014 .

[23]  J. Nairn,et al.  Simulation of transverse wood compression using a large-deformation, hyperelastic–plastic material model , 2014, Wood Science and Technology.

[24]  Yan Yu,et al.  Bamboo fibers for composite applications: a mechanical and morphological investigation , 2014, Journal of Materials Science.

[25]  Yan Yu,et al.  Detection of complex vascular system in bamboo node by X-ray μCT imaging technique , 2014 .

[26]  J. Dunlop,et al.  Experimental micromechanical characterisation of wood cell walls , 2012, Wood Science and Technology.

[27]  H. Yanhui,et al.  Plant Age Effect on Mechanical Properties of Moso Bamboo ( Phyllostachys Heterocycla Var. Pubescens ) Single Fibers , 2012 .

[28]  E. Gamstedt,et al.  Mixed numerical–experimental methods in wood micromechanics , 2012, Wood Science and Technology.

[29]  Neri Oxman,et al.  Functionally Graded Rapid Prototyping , 2011 .

[30]  Ulrike G K Wegst,et al.  Bending efficiency through property gradients in bamboo, palm, and wood-based composites. , 2011, Journal of the mechanical behavior of biomedical materials.

[31]  Sandra J Shefelbine,et al.  BoneJ: Free and extensible bone image analysis in ImageJ. , 2010, Bone.

[32]  M. Ashby,et al.  Micro-architectured materials: past, present and future , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Joost G. Vogtländer,et al.  The sustainability of bamboo products for local and Western European applications. LCAs and land-use , 2010 .

[34]  D. Inzé,et al.  Plant structure visualization by high-resolution X-ray computed tomography. , 2010, Trends in plant science.

[35]  Frederik L. Giesel,et al.  3D printing based on imaging data: review of medical applications , 2010, International Journal of Computer Assisted Radiology and Surgery.

[36]  Ge Wang,et al.  Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique , 2010 .

[37]  Chang-Hua Fang,et al.  Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure , 2010, Wood Science and Technology.

[38]  P. Wyss,et al.  3D micro-scale deformations of wood in bending: synchrotron radiation muCT data analyzed with digital volume correlation. , 2008, Journal of structural biology.

[39]  D. Nayyar,et al.  China, India, Brazil and South Africa in the World Economy: Engines of Growth? , 2008 .

[40]  B. Zhang,et al.  Cell-Wall Mechanical Properties of Bamboo Investigated by In-Situ Imaging Nanoindentation , 2007 .

[41]  Ingo Burgert,et al.  Exploring the micromechanical design of plant cell walls. , 2006, American journal of botany.

[42]  Veerle Cnudde,et al.  Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. , 2004, Journal of structural biology.

[43]  R. Murphy,et al.  Developmental changes in cell wall structure of phloem fibres of the bamboo Dendrocalamus asper. , 2004, Annals of botany.

[44]  W. Liese,et al.  Research on bamboo , 1987, Wood Science and Technology.

[45]  N. Parameswaran,et al.  On the fine structure of bamboo fibres , 1976, Wood Science and Technology.

[46]  Walter Liese,et al.  On the anatomy of Asian bamboos, with special reference to their vascular bundles , 1971, Wood Science and Technology.

[47]  R. Hague,et al.  Materials analysis of stereolithography resins for use in Rapid Manufacturing , 2004 .

[48]  Walter Liese,et al.  Bamboo and Rattan in the World , 2003 .

[49]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[50]  L. Gibson,et al.  Size effects in ductile cellular solids. Part II : experimental results , 2001 .

[51]  E. Garboczi,et al.  Elastic moduli of model random three-dimensional closed-cell cellular solids , 2000, cond-mat/0009004.

[52]  Lorna J. Gibson,et al.  Mechanical Behavior of Metallic Foams , 2000 .

[53]  A. Donald,et al.  The elasticity and failure of fluid-filled cellular solids: theory and experiment. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Lisa Axe,et al.  Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source , 1999, Optics & Photonics.

[55]  Shigeyasu Amada,et al.  Fiber texture and mechanical graded structure of bamboo , 1997 .

[56]  Fumio Nogata,et al.  Intelligent functionally graded material: Bamboo , 1995 .

[57]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[58]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[59]  E. Sjöström,et al.  Wood Chemistry: Fundamentals and Applications , 1981 .

[60]  W. Davies BAMBOO , 1966, Nature.