Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome

[1]  P. Bork,et al.  Enterotypes of the human gut mycobiome , 2022, bioRxiv.

[2]  N. Kyrpides,et al.  CheckV assesses the quality and completeness of metagenome-assembled viral genomes , 2020, Nature Biotechnology.

[3]  R. Finn,et al.  Massive expansion of human gut bacteriophage diversity , 2020, Cell.

[4]  M. Sullivan,et al.  The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut , 2020, Cell Host & Microbe.

[5]  Robert D. Finn,et al.  A unified catalog of 204,938 reference genomes from the human gut microbiome , 2020, Nature Biotechnology.

[6]  Edoardo Pasolli,et al.  Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations , 2020, Genome Biology.

[7]  C. Wilke,et al.  BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains , 2020, bioRxiv.

[8]  Yanbin Yin,et al.  AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses , 2020, Nucleic Acids Res..

[9]  F. Bushman,et al.  Detecting contamination in viromes using ViromeQC , 2019, Nature Biotechnology.

[10]  T. Sutton,et al.  Whole-Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease. , 2019, Cell host & microbe.

[11]  T. Sutton,et al.  The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. , 2019, Cell host & microbe.

[12]  P. Turnbaugh,et al.  CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog. , 2019, Cell host & microbe.

[13]  Shaohua Zhao,et al.  Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates , 2019, Antimicrobial Agents and Chemotherapy.

[14]  Donovan H. Parks,et al.  Evaluation of a concatenated protein phylogeny for classification of tailed double-stranded DNA viruses belonging to the order Caudovirales , 2019, Nature Microbiology.

[15]  M. Sullivan,et al.  Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils , 2019, PeerJ.

[16]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[17]  Katherine S. Pollard,et al.  New insights from uncultivated genomes of the global human gut microbiome , 2019, Nature.

[18]  Christine L. Sun,et al.  Clades of huge phages from across Earth’s ecosystems , 2019, bioRxiv.

[19]  Ryan M. O’Connell,et al.  Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. , 2019, Cell host & microbe.

[20]  Robert D. Finn,et al.  A new genomic blueprint of the human gut microbiota , 2019, Nature.

[21]  Brian C. Thomas,et al.  Megaphages infect Prevotella and variants are widespread in gut microbiomes , 2019, Nature Microbiology.

[22]  E. Delwart,et al.  Enteric Virome and Bacterial Microbiota in Children With Ulcerative Colitis and Crohn Disease , 2019, Journal of pediatric gastroenterology and nutrition.

[23]  Edoardo Pasolli,et al.  Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle , 2019, Cell.

[24]  Natalia N. Ivanova,et al.  Minimum Information about an Uncultivated Virus Genome (MIUViG) , 2018, Nature Biotechnology.

[25]  C. Hill,et al.  ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis , 2018, Nature Communications.

[26]  I-Min A. Chen,et al.  IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes , 2018, Nucleic Acids Res..

[27]  T. Sutton,et al.  Biology and Taxonomy of crAss-like Bacteriophages, the Most Abundant Virus in the Human Gut. , 2018, Cell host & microbe.

[28]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[29]  R. Edwards,et al.  A diversity-generating retroelement encoded by a globally ubiquitous Bacteroides phage , 2018, Microbiome.

[30]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[31]  Rebecca L. Moore,et al.  Tracing mother-infant transmission of bacteriophages by means of a novel analytical tool for shotgun metagenomic datasets: METAnnotatorX , 2018, Microbiome.

[32]  Marcos Parras-Moltó,et al.  Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses , 2018, Microbiome.

[33]  T. Sutton,et al.  Reproducible protocols for metagenomic analysis of human faecal phageomes , 2018, Microbiome.

[34]  M. Mariadassou,et al.  Phages infecting Faecalibacterium prausnitzii belong to novel viral genera that help to decipher intestinal viromes , 2018, Microbiome.

[35]  Adam M. Phillippy,et al.  MUMmer4: A fast and versatile genome alignment system , 2018, PLoS Comput. Biol..

[36]  Henry C. Lin,et al.  Phage therapy: An alternative to antibiotics in the age of multi-drug resistance , 2017, World journal of gastrointestinal pharmacology and therapeutics.

[37]  Natalia N. Ivanova,et al.  Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea , 2017, Nature Biotechnology.

[38]  M. Touchon,et al.  Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. , 2017, Current opinion in microbiology.

[39]  Yang Young Lu,et al.  VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data , 2017, Microbiome.

[40]  S. Lynch,et al.  The Human Intestinal Microbiome in Health and Disease. , 2016, The New England journal of medicine.

[41]  Georgios A. Pavlopoulos,et al.  Uncovering Earth’s virome , 2016, Nature.

[42]  M. Sullivan,et al.  Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses , 2016, The ISME Journal.

[43]  Johannes Söding,et al.  MMseqs software suite for fast and deep clustering and searching of large protein sequence sets , 2016, Bioinform..

[44]  M. Breitbart,et al.  Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology. , 2016, FEMS microbiology letters.

[45]  G. Mohr,et al.  Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein , 2016, Science.

[46]  Christine L. Sun,et al.  Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems , 2016, Nature Communications.

[47]  Bas E. Dutilh,et al.  Computational approaches to predict bacteriophage–host relationships , 2015, FEMS microbiology reviews.

[48]  Jelle Matthijnssens,et al.  Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis , 2015, Scientific Reports.

[49]  Matthew B. Sullivan,et al.  VirSorter: mining viral signal from microbial genomic data , 2015, PeerJ.

[50]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[51]  M. Touchon,et al.  Pervasive domestication of defective prophages by bacteria , 2014, Proceedings of the National Academy of Sciences.

[52]  Yuzhen Ye Identification of Diversity-Generating Retroelements in Human Microbiomes , 2014, International journal of molecular sciences.

[53]  L. Pongor,et al.  Fast and Sensitive Alignment of Microbial Whole Genome Sequencing Reads to Large Sequence Datasets on a Desktop PC: Application to Metagenomic Datasets and Pathogen Identification , 2014, PloS one.

[54]  R. Edwards,et al.  A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes , 2014, Nature Communications.

[55]  Molly K. Gibson,et al.  Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology , 2014, The ISME Journal.

[56]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[57]  Axel Visel,et al.  Stop codon reassignments in the wild , 2014, Science.

[58]  François Enault,et al.  Assessment of viral community functional potential from viral metagenomes may be hampered by contamination with cellular sequences , 2013, Open Biology.

[59]  E. Cheek,et al.  Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences , 2013, Nature Communications.

[60]  Frederic D Bushman,et al.  Rapid evolution of the human gut virome , 2013, Proceedings of the National Academy of Sciences.

[61]  Edward C. Uberbacher,et al.  Gene and translation initiation site prediction in metagenomic sequences , 2012, Bioinform..

[62]  Tatiana A. Tatusova,et al.  BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata , 2011, Nucleic Acids Res..

[63]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[64]  F. Bushman,et al.  The human gut virome: inter-individual variation and dynamic response to diet. , 2011, Genome research.

[65]  Kyoung-Ho Kim,et al.  Amplification Methods Bias Metagenomic Libraries of Uncultured Single-Stranded and Double-Stranded DNA Viruses , 2011, Applied and Environmental Microbiology.

[66]  Jonathan E. Schmitz,et al.  Identifying Active Phage Lysins through Functional Viral Metagenomics , 2010, Applied and Environmental Microbiology.

[67]  Forest Rohwer,et al.  Viruses in the fecal microbiota of monozygotic twins and their mothers , 2010, Nature.

[68]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[69]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[70]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[71]  F. Rohwer,et al.  Explaining microbial population genomics through phage predation , 2009, Nature Reviews Microbiology.

[72]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[73]  Nikos Kyrpides,et al.  CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats , 2007, BMC Bioinformatics.

[74]  Robert C. Edgar,et al.  PILER-CR: Fast and accurate identification of CRISPR repeats , 2007, BMC Bioinformatics.

[75]  Zhou Yu,et al.  Ig-like domains on bacteriophages: a tale of promiscuity and deceit. , 2006, Journal of molecular biology.

[76]  P. Salamon,et al.  Metagenomic Analyses of an Uncultured Viral Community from Human Feces , 2003, Journal of bacteriology.

[77]  G. Fournous,et al.  Prophage Genomics , 2003, Microbiology and Molecular Biology Reviews.

[78]  R. Simons,et al.  Reverse Transcriptase-Mediated Tropism Switching in Bordetella Bacteriophage , 2002, Science.

[79]  H. Ackermann Tailed Bacteriophages: The Order Caudovirales , 1998, Advances in Virus Research.

[80]  M. Kamal,et al.  Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. , 2015, Saudi journal of biological sciences.

[81]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[82]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..