Zn-Al and Mg-Al layered double hydroxides (LDHs) loaded with quinaldate and 2-mercaptobenzothiazolate anions were synthesized via anion-exchange reaction. The resulting compounds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy. Spectrophotometric measurements demonstrated that the release of organic anions from these LDHs into the bulk solution is triggered by the presence of chloride anions, evidencing the anion-exchange nature of this process. The anticorrosion capabilities of LDHs loaded with organic inhibitors toward the AA2024 aluminum alloy were analyzed by electrochemical impedance spectroscopy. A significant reduction of the corrosion rate is observed when the LDH nanopigments are present in the corrosive media. The mechanism by which the inhibiting anions can be released from the LDHs underlines the versatility of these environmentally friendly structures and their potential application as nanocontainers in self-healing coatings.