Novel mitophagy inducer alleviates lupus nephritis by reducing myeloid cell activation and autoantigen presentation.

[1]  Andrea Fava,et al.  Cellular and molecular heterogeneity in systemic lupus erythematosus. , 2022, Seminars in immunology.

[2]  Xin Dang,et al.  Lupus nephritis: new progress in diagnosis and treatment. , 2022, Journal of autoimmunity.

[3]  R. Abdi,et al.  CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy , 2022, Science advances.

[4]  Xuetao Cao,et al.  Dendritic cells in systemic lupus erythematosus: From pathogenesis to therapeutic applications. , 2022, Journal of autoimmunity.

[5]  D. Harrison,et al.  Isolevuglandins disrupt PU.1-mediated C1q expression and promote autoimmunity and hypertension in systemic lupus erythematosus , 2022, JCI insight.

[6]  Guangjun Liu,et al.  Mitophagy induced by UMI‐77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis , 2022, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  V. Pascual,et al.  Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE , 2021, Cell.

[8]  M. Tremblay,et al.  Platelets release mitochondrial antigens in systemic lupus erythematosus , 2021, Science Translational Medicine.

[9]  Wan-chi Lin,et al.  IRGM1 links mitochondrial quality control to autoimmunity , 2020, Nature Immunology.

[10]  Hongguang Xia,et al.  Targeting MCL1 to induce mitophagy is a potential therapeutic strategy for Alzheimer disease , 2020, Autophagy.

[11]  Qiming Sun,et al.  Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer’s disease mouse model , 2020, Nature Communications.

[12]  M. Khodoun,et al.  Targeted knockdown of Kv1.3 channels in T lymphocytes corrects the disease manifestations associated with systemic lupus erythematosus , 2020, Science Advances.

[13]  Iannis E. Adamopoulos,et al.  Systemic lupus erythematosus favors the generation of IL-17 producing double negative T cells , 2020, Nature Communications.

[14]  Cizhong Jiang,et al.  TCONS_00483150 as a novel diagnostic biomarker of systemic lupus erythematosus. , 2020, Epigenomics.

[15]  Shuxia Liu,et al.  Nestin protects podocyte from injury in lupus nephritis by mitophagy and oxidative stress , 2020, Cell Death & Disease.

[16]  Mengyuan Li,et al.  JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis. , 2020, Journal of autoimmunity.

[17]  D. Harrison,et al.  Sympathetic Enhancement of Memory T-Cell Homing and Hypertension Sensitization , 2020, Circulation research.

[18]  Z. Ran,et al.  Emerging views of mitophagy in immunity and autoimmune diseases , 2020, Autophagy.

[19]  C. Lindskog,et al.  A genome-wide transcriptomic analysis of protein-coding genes in human blood cells , 2019, Science.

[20]  Lei Zhou,et al.  REGγ controls Th17 cell differentiation and autoimmune inflammation by regulating dendritic cells , 2019, Cellular & Molecular Immunology.

[21]  R. Moses,et al.  The proteasome activator REGγ counteracts immunoproteasome expression and autoimmunity. , 2019, Journal of autoimmunity.

[22]  A. Makrigiannakis,et al.  IFNα Impairs Autophagic Degradation of mtDNA Promoting Autoreactivity of SLE Monocytes in a STING-Dependent Fashion , 2018, Cell reports.

[23]  E. Ogier-Denis,et al.  Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasmacytoid dendritic cells , 2018, Nature Communications.

[24]  Ming-hui Zhao,et al.  Redefining lupus nephritis: clinical implications of pathophysiologic subtypes , 2017, Nature Reviews Nephrology.

[25]  L. Morel Immunometabolism in systemic lupus erythematosus , 2017, Nature Reviews Rheumatology.

[26]  S. Landas,et al.  Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupus‐Prone Mice , 2016, Arthritis & rheumatology.

[27]  V. Pascual,et al.  Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus , 2016, The Journal of experimental medicine.

[28]  F. Middleton,et al.  HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE , 2013, Annals of the rheumatic diseases.

[29]  M. Weisman,et al.  New insights into mechanisms of therapeutic effects of antimalarial agents in SLE , 2012, Nature Reviews Rheumatology.

[30]  Hong Zhang,et al.  Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population , 2011, Annals of the rheumatic diseases.