Phytoplankton photosynthetic parameters off Baja California: A tool to estimate primary production with remote sensing data

Phytoplankton photosynthetic parameters (maximum light utilization coefficient, alpha*; maximum photosynthetic rate, P*m; maximum quantum yield, phi-max) off Baja California were estimated from samples collected at the 50% light level during winter, spring, summer, and autumn 1999. Chlorophyll concentration was also determined, and in situ experiments were conducted using the 14C method to determine primary production (PP) in the euphotic zone. The highest alpha* and phi-max values were found during the spring survey, mainly at the coastal areas, associated with diatom and dinoflagellate abundances and high chlorophyll concentrations. However, high P*m values were measured during autumn in both inshore and offshore areas due to the presence of smaller phytoplankton cells. The average profiles of the photosynthetic parameters (alpha*(z) and P*m(z)) in the water column were estimated for 2 regions. These parameters were used to estimate PP with semi-analytical models. Modeled PP was contrasted with in situ PP to validate our calculated photosynthetic parameters in the euphotic zone. In general, modeled PP values were similar to in situ values (94 mg C·m–2·h–1), with a high correlation coefficient (r = 0.85). Modeled PP for coastal waters in the northern and central regions was 1.5-fold greater than in situ estimates during spring. In conclusion, when used with remotely sensed phytoplankton pigment and surface irradiance data, the average profiles of alpha* and P*m(z) could be a useful tool to calculate PP in our study area. Los parametros fotosinteticos (coeficiente de maxima utilizacion de la luz, alpha*; tasa fotosintetica maxima, P*m; eficiencia cuantica maxima, phi-max) fueron estimados para la region frente a Baja California a partir de muestras recolectadas del 50% de irradiancia superficial durante invierno, primavera, verano y otono de 1999. Ademas, se determino la concentracion de clorofila y se realizaron experimentos in situ para determinar la produccion primaria (PP) en la zona eufotica con el metodo 14C. Los valores mas altos de alpha* y phi-max se registraron durante la primavera, principalmente en la zona costera, y estuvieron relacionados con la abundancia de diatomeas y dinoflagelados y con las altas concentraciones de clorofila. Sin embargo, los valores altos de P*m se midieron durante el otono en la zona costera y la zona oceanica debido a la presencia de fitoplancton de menor tamano. Los perfiles promedio de los parametros fotosinteticos (alpha*(z) y P*m(z)) fueron estimados para la columna de agua en 2 regiones (norte y central). A partir de estos datos, se estimo la PP de ambas regiones oceanograficas usando modelos semi-analiticos. Para validar los parametros fotosinteticos calculados para la zona eufotica, la PP modelada se comparo con la PP in situ. En general, la PP modelada fue similar a los valores in situ (94 mg C·m–2·h–1), con un alto coeficiente de correlacion (r = 0.85). Se encontro que la PP modelada para aguas costeras de las regiones norte y central fue 1.5 veces mayor que la estimada in situ durante la primavera. Los resultados sugieren que, junto con informacion sobre pigmentos de fitoplancton y datos de irradiancia superficial medidos por sensores remotos, los perfiles promedio de alpha*(z) y P*m(z) pueden ser una herramienta util para calcular la PP en nuestra area de estudio.

[1]  K. Baker,et al.  Variability in Spectral and Nonspectral Measurements of Photosynthetic Light Utilization Efficiencies , 1991 .

[2]  E. Steemann Nielsen,et al.  The Use of Radio-active Carbon (C14) for Measuring Organic Production in the Sea , 1952 .

[3]  S. Álvarez-Borrego,et al.  PHOTOSYNTHETIC PARAMETERS OF PHYTOPLANKTON IN THE CALIFORNIA CURRENT SYSTEM , 2003 .

[4]  T. L. Espinosa-Carreón,et al.  Influence of anomalous subarctic water intrusion on phytoplankton production off Baja California , 2015 .

[5]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[6]  Gilberto Gaxiola-Castro,et al.  Plankton response to El Nino 1997-1998 and La Nina 1999 in the southern region of the California Current , 2002 .

[7]  S. G. Marinone,et al.  Evolution and extension of the Santa Ana winds of February 2002 over the ocean, off California and the Baja California Peninsula , 2003 .

[8]  Thomas L. Hayward,et al.  DETERMINING CHLOROPHYLL ON THE 1984 CALCOFI SURVEYS , 1984 .

[9]  A. Morel,et al.  An incubator designed for extensive and sensitive measurements of phytoplankton photosynthetic parameters , 1994 .

[10]  Lisa R. Moore,et al.  Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples , 2000 .

[11]  T. Berman,et al.  Field experiments for in situ measurement of photosynthetic efficiency and quantum yield , 1984 .

[12]  T. Platt,et al.  Ocean primary production and available light: further algorithms for remote sensing , 1988 .

[13]  H. A. Matlick,et al.  Diurnal patterns of size-fractioned primary productivity across a coastal front , 1987 .

[14]  B. G. Mitchell,et al.  Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique , 1990, Defense, Security, and Sensing.

[15]  I. Valiela Marine Ecological Processes , 2015, Springer New York.

[16]  H. Bouman,et al.  Bio-optical properties of the subtropical North Atlantic. I. Vertical variability , 2000 .

[17]  T Platt,et al.  Remote sensing of ocean chlorophyll: consequence of nonuniform pigment profile. , 1989, Applied optics.

[18]  T. Platt,et al.  An estimate of global primary production in the ocean from satellite radiometer data , 1995 .

[19]  G. Gaxiola-Castro,et al.  Efecto de los vientos Santa Ana en las propiedades bio-ópticas frente a Baja California , 2005 .

[20]  John Marra,et al.  Estimation of photosynthetic rate from measurements of natural fluorescence : analysis of the effects of light and temperature , 1992 .

[21]  H. Sosik Bio-optical modeling of primary production: consequences of variability in quantum yield and specific absorption , 1996 .

[22]  T. Platt,et al.  Oceanic Primary Production: Estimation by Remote Sensing at Local and Regional Scales , 1988, Science.

[23]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[24]  C. Yentsch,et al.  A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence , 1963 .

[25]  Mati Kahru,et al.  Phytoplankton absorption, photosynthetic parameters, and primary production off Baja California: summer and autumn 1998 , 2004 .

[26]  Reginaldo Durazo,et al.  Evolution of oceanographic conditions off Baja California: 1997–1999 , 2002 .

[27]  Trevor Platt,et al.  Regionally and seasonally differentiated primary production in the North Atlantic , 1995 .

[28]  Motoaki Kishino,et al.  Estimation of the spectral absorption coefficients of phytoplankton in the sea , 1985 .

[29]  T. Platt,et al.  Basin-scale estimates of oceanic primary production by remote sensing - The North Atlantic , 1991 .

[30]  Timothy R. Parsons,et al.  A manual of chemical and biological methods for seawater analysis , 1984 .

[31]  C. Lorenzen,et al.  Fluorometric Determination of Chlorophyll , 1965 .

[32]  Reginaldo Durazo,et al.  Climate and upper ocean variability off Baja California, Mexico: 1997–2008 , 2009 .

[33]  P. Falkowski,et al.  Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems , 1996 .

[34]  Trevor Platt,et al.  Mathematical formulation of the relationship between photosynthesis and light for phytoplankton , 1976 .

[35]  Oscar Schofield,et al.  Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803 (DC2) , 1989 .

[36]  A. Trasviña,et al.  ‘Santa Ana’ winds and upwelling filaments off Northern Baja California , 2003 .

[37]  P. Falkowski,et al.  Light Harvesting and Utilization by Phytoplankton , 1986 .

[38]  C. Gibson,et al.  Photosynthetic characteristics of planktonic blue-green algae: The response of twenty strains grown under high and low light , 1982 .

[39]  Charles C. Trees,et al.  Modeling the vertical distribution of chlorophyll in the California Current System , 1997 .

[40]  P. Glibert,et al.  Effect of irradiances up to 2000 μE m−2 s−1 on marine Synechococcus WH7803—I. Growth, pigmentation, and cell composition , 1987 .

[41]  Oscar Schofield,et al.  In situ photosynthetic quantum yield. Correspondence to hydrographic and optical variability within the Southern California Bight , 1993 .

[42]  R. Geider Quantitative phytoplankton physiology: implications for primary production and phytoplankton growth , 2013 .

[43]  Stuart,et al.  Some bio-optical characteristics of phytoplankton in the NW Indian Ocean , 1996 .