A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant

The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young (∼330-year-old) neutron star.

[1]  Mark W. Bautz,et al.  Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[2]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[3]  D. Page,et al.  Delayed switch-on of pulsars , 1995 .

[4]  G. Luna,et al.  A DEDICATED CHANDRA ACIS OBSERVATION OF THE CENTRAL COMPACT OBJECT IN THE CASSIOPEIA A SUPERNOVA REMNANT , 2009, 0905.3190.

[5]  Hydrogen and helium abundances in neutron-star atmospheres , 1968 .

[6]  The spherical shell , 1975 .

[7]  J. Lattimer,et al.  Neutron star observations: Prognosis for equation of state constraints , 2007 .

[8]  G. Hasinger,et al.  XMM‐Newton observation of the galactic centre – evidence against the X‐ray reflection nebulae model? , 2003 .

[9]  Mit,et al.  Modelling mid-Z element atmospheres for strongly magnetized neutron stars , 2006, astro-ph/0611145.

[10]  W. Ashworth A Probable Flamsteed Observation of the Cassiopeia a Supernova , 1979 .

[11]  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE EXPANSION ASYMMETRY AND AGE OF THE CASSIOPEIA A SUPERNOVA REMNANT 1 , 2006 .

[12]  S. Tsuruta Thermal Evolution of Neutron Stars , 2000 .

[13]  San Diego State University,et al.  The cooling of compact stars , 2005, astro-ph/0508056.

[14]  L. Bildsten,et al.  Evolution of Young Neutron Star Envelopes , 2003, astro-ph/0312589.

[15]  M. Seaton The Opacity Project , 1995 .

[16]  U. Hwang,et al.  Is the Compact Source at the Center of Cassiopeia A Pulsed? , 2001, astro-ph/0106516.

[17]  Model neutron star atmospheres with low magnetic fields. 1. Atmospheres in radiative equilibrium , 1996, astro-ph/9604072.

[18]  G. Rybicki,et al.  A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae , 2005, astro-ph/0506563.

[19]  A. Fabian,et al.  The Three-dimensional Structure of the Cassiopeia A Supernova Remnant. I. The Spherical Shell , 1995 .

[20]  J. Heyl,et al.  THE CENTRAL X-RAY POINT SOURCE IN CASSIOPEIA A , 2000, astro-ph/0001026.

[21]  G. Greenstein,et al.  Pulselike character of blackbody radiation from neutron stars. , 1983 .

[22]  W. Ho,et al.  Atmospheres and Spectra of Strongly Magnetized Neutron Stars. III. Partially Ionized Hydrogen Models , 2001, astro-ph/0104199.

[23]  Patrick O. Slane,et al.  A Million Second Chandra View of Cassiopeia A , 2004, astro-ph/0409760.

[24]  John E. Davis Event Pileup in Charge-coupled Devices , 2001 .

[25]  Pavlov,et al.  The Compact Central Object in Cassiopeia A: A Neutron Star with Hot Polar Caps or a Black Hole? , 1999, The Astrophysical journal.

[26]  C. Alcock,et al.  The surface chemistry of stars. I - Diffusion of heavy ions in white dwarf envelopes. II - Fractionated accretion of interstellar matter , 1980 .