The reaction energies of ethylene, CO, and N2 with proton, hydrogen atom, and hydride ion

[1]  P. Schleyer,et al.  Infrared spectroscopy of protonated ethylene: The nature of proton binding in the non-classical structure , 2009 .

[2]  E. Baker,et al.  The Search for H− in Astrophysical Environments , 2008 .

[3]  A. Gekhman,et al.  Hydroperoxide Oxidation of Difficult-to-Oxidize Substrates: An Unprecedented C–C Bond Cleavage in Alkanes and the Oxidation of Molecular Nitrogen , 2004 .

[4]  R. Streubel,et al.  The strongest bond in the universe? Accurate calculation of compliance matrices for the ions N2H+, HCO+, and HOC+ , 2003 .

[5]  J. E. Boggs,et al.  Coupled Cluster CCSD(T) Calculations of Equilibrium Geometries, Anharmonic Force Fields, and Thermodynamic Properties of the Formyl (HCO) and Isoformyl (COH) Radical Species , 2003 .

[6]  T. Dunning,et al.  Ab initio characterization of the HCOx (x = -1, 0, +1) species: structures, vibrational frequencies, CH bond dissociation energies, and HCO ionization potential and electron affinity , 2000 .

[7]  E. P. Hunter,et al.  Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update , 1998 .

[8]  F. A. Carroll Solutions Manual for Perspectives on Structure and Mechanism in Organic Chemistry , 1997 .

[9]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[10]  R. Bartlett,et al.  Predicted NMR Spectra for Ethyl Carbocations: A Fingerprint for Nonclassical Hydrogen-Bridged Structures , 1995 .

[11]  M. Stumpf,et al.  THE UNIMOLECULAR DISSOCIATION OF HCO. I: OSCILLATIONS OF PURE CO STRETCHING RESONANCE WIDTHS , 1995 .

[12]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[13]  M. Pilling,et al.  Direct observation of equilibration in the system hydrogen atom + ethylene .dblharw. ethyl radical. Standard enthalpy of formation of the ethyl radical , 1993 .

[14]  D. Crosley,et al.  Laser‐induced fluorescence in the B̃–X̃ system of the HCO radical , 1990 .

[15]  L. Curtiss,et al.  The ethyl radical: Photoionization and theoretical studies , 1989 .

[16]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[17]  R. Woods Microwave spectroscopy of molecular ions in the laboratory and in space , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  A. Wagner,et al.  The addition and dissociation reaction atomic hydrogen + carbon monoxide .dblharw. oxomethyl. 2. Experimental studies and comparison with theory , 1987 .

[19]  W. C. Lineberger,et al.  Laser photoelectron spectroscopy of the formyl anion , 1986 .

[20]  W. Huntress,et al.  Proton transfer reactions from H3+ ions to N2, O2, and CO molecules☆ , 1975 .

[21]  M. Szwarc Carbanions, Living Polymers and Electron Transfer Processes , 1968 .

[22]  R. Taft,et al.  The Mechanism of the Acid-catalyzed Hydration of Olefins1 , 1953 .