Soybean Production Under Flooding Stress and Its Mitigation Using Plant Growth-Promoting Microbes

[1]  S. Komatsu,et al.  ‘Omics’ techniques and their use to identify how soybean responds to flooding , 2015, Journal of Analytical Science and Technology.

[2]  Jadunandan Dash,et al.  Vulnerability of ecosystems to climate change moderated by habitat intactness , 2015, Global change biology.

[3]  E. Braga,et al.  Waterlogging-induced changes in fermentative metabolism in roots and nodules of soybean genotypes , 2014 .

[4]  S. Komatsu,et al.  Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress , 2014, Front. Plant Sci..

[5]  S. Komatsu,et al.  Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress , 2014, Front. Plant Sci..

[6]  Amauri Nelson Beutler,et al.  Soil hydric excess and soybean yield and development in Brazil , 2014 .

[7]  Singh,et al.  Flooding: abiotic constraint limiting vegetable productivity , 2014 .

[8]  S. Komatsu,et al.  Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance , 2014, Proteomes.

[9]  A. Soltani,et al.  The Effect of floodingand nutrition levels on reproductive growth stages of aerenchyma formation and ethylene production in soybean (Glycine max L) , 2014 .

[10]  B. Glick Bacteria with ACC deaminase can promote plant growth and help to feed the world. , 2014, Microbiological research.

[11]  N. Tuteja,et al.  Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity , 2014, Protoplasma.

[12]  H. Daimon,et al.  Effects of flooding on arbuscular mycorrhizal colonization and root-nodule formation in different roots of soybeans , 2013 .

[13]  T. Gerats,et al.  Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops , 2013, Front. Plant Sci..

[14]  S. Komatsu,et al.  Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. , 2013, Journal of proteome research.

[15]  B. McConkey,et al.  Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. , 2013, Journal of proteomics.

[16]  S. Komatsu,et al.  Proteomic analysis of the flooding tolerance mechanism in mutant soybean. , 2013, Journal of proteomics.

[17]  N. Ohtake,et al.  Soybean Seed Production and Nitrogen Nutrition , 2013 .

[18]  A. Kalra,et al.  1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. , 2012, Plant physiology and biochemistry : PPB.

[19]  S. Komatsu,et al.  Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene , 2012 .

[20]  Xiangzong Meng,et al.  Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis , 2012, PLoS genetics.

[21]  P. N. Bhattacharyya,et al.  Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture , 2012, World journal of microbiology & biotechnology.

[22]  Joost T. van Dongen,et al.  Making sense of low oxygen sensing. , 2012, Trends in plant science.

[23]  Proteem Saikia Siddhartha,et al.  A review on the role of Azospirillum in the yield improvement of non leguminous crops , 2012 .

[24]  R. Drijber,et al.  Arbuscular Mycorrhizal Fungal Community Structure in Soybean Roots: Comparison between Kanagawa and Hokkaido, Japan , 2011 .

[25]  Giyanto,et al.  Growth Enhancement and Disease Reduction of Soybean by 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Pseudomonas , 2011 .

[26]  S. Komatsu,et al.  Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots , 2011, Plant Molecular Biology.

[27]  S. Komatsu,et al.  Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. , 2011, Journal of proteome research.

[28]  U. Pérez-López,et al.  Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery , 2011 .

[29]  E. Lin,et al.  [Impact of climatic change on soybean production: a review]. , 2010, Ying yong sheng tai xue bao = The journal of applied ecology.

[30]  S. Komatsu,et al.  Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. , 2010, Journal of proteome research.

[31]  F. Asch,et al.  Plant-rhizobacteria interactions alleviate abiotic stress conditions. , 2009, Plant, cell & environment.

[32]  H. Nguyen,et al.  Physiological and molecular approaches to improve drought resistance in soybean. , 2009, Plant & cell physiology.

[33]  Dennis Normile,et al.  Reinventing Rice to Feed the World , 2008, Science.

[34]  S. Komatsu,et al.  Cytosolic ascorbate peroxidase 2 (cAPX 2) is involved in the soybean response to flooding. , 2008, Phytochemistry.

[35]  A. Lobato,et al.  Morphological Changes in Soybean under Progressive Water Stress , 2008 .

[36]  E. Beck,et al.  Specific and unspecific responses of plants to cold and drought stress , 2007, Journal of Biosciences.

[37]  R. Yordanova,et al.  Flooding-induced changes in photosynthesis and oxidative status in maize plants , 2007, Acta Physiologiae Plantarum.

[38]  H. Kirnak,et al.  Effect of seasonal water stress on soybean and site specific evaluation of CROPGRO-Soybean model under semi-arid climatic conditions , 2007 .

[39]  J. Bouvet,et al.  Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings , 2007, Mycorrhiza.

[40]  K. Harada,et al.  QTL analysis of flooding tolerance in soybean at an early vegetative growth stage , 2006 .

[41]  T. Yamakawa,et al.  Effects on Growth and Seed Yield of Small Seed Soybean Cultivars of Flooding Conditions in Paddy Field , 2006 .

[42]  T. Yamakawa,et al.  Tolerance differences among small seed soybean cultivars against excessive water stress conditions , 2006 .

[43]  R. Pierik,et al.  How plants cope with complete submergence. , 2006, The New phytologist.

[44]  S. Herbert,et al.  Phosphorus Application Affects the Soybean Root Response to Water Deficit at the Initial Flowering and Full Pod Stages , 2005 .

[45]  S. Guerreiro,et al.  Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. , 2005, Annals of botany.

[46]  M. Jackson,et al.  Response and adaptation by plants to flooding stress. , 2005, Annals of botany.

[47]  V. Franceschi,et al.  Calcium oxalate in plants: formation and function. , 2005, Annual review of plant biology.

[48]  Luciano Kayser Vargas,et al.  Viabilidade da inoculação de soja com estirpes de Bradyrhizobium em solo inundado , 2004 .

[49]  M. Martins-Loução,et al.  Arbuscular mycorrhizal fungal propagules in a salt marsh , 2004, Mycorrhiza.

[50]  T. Setter,et al.  Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats , 2003, Plant and Soil.

[51]  T. Mochizuki,et al.  Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions , 2003, Plant and Soil.

[52]  G. Boru,et al.  Responses of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration. , 2003, Annals of botany.

[53]  E. Bianchini,et al.  Photosynthesis, growth and development of Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae) in flooded soil , 2002 .

[54]  F. Mizutani,et al.  Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings , 2002 .

[55]  T. Tóth,et al.  The arbuscular mycorrhizal fungus Glomusgeosporum in European saline, sodic and gypsum soils , 2002, Mycorrhiza.

[56]  K. Koehler,et al.  Flooding and Temperature Effects on Soybean Germination , 2001 .

[57]  S. Shleev,et al.  A Method for Producing Multiple Forms of Metleghemoglobin Reductase and Leghemoglobin Components from Lupine Nodules , 2001, Applied Biochemistry and Microbiology.

[58]  Sandro Luis Petter Medeiros,et al.  Excesso hídrico sobre os componentes do rendimento da cultura da soja , 2001 .

[59]  C. Friese,et al.  Mycorrhizal fungi associated with plants in ground-water fed wetlands , 2000, Wetlands.

[60]  M. Bacanamwo,et al.  Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia , 1999 .

[61]  J. Board,et al.  Waterlogging effects on growth and yield components in late-planted soybean. , 1998, Crop science.

[62]  P. A. Attwood,et al.  Roots of willow (Salix viminalis L.) show marked tolerance to oxygen shortage in flooded soils and in solution culture , 1996, Plant and Soil.

[63]  J. Sperry,et al.  Water Relations of Plants and Soils , 1995 .

[64]  T. Vantoai,et al.  Genetic variability for flooding tolerance in soybeans , 1994 .

[65]  F. Sung Waterlogging effect on nodule nitrogenase and leaf nitrate reductase activities in soybean , 1993 .

[66]  F. Thseng,et al.  Studies on the screening technique for pre-germination flooding tolerance in soybean. , 1992 .

[67]  S. Dhillion,et al.  The influence of inorganic nutrient fertilization on the growth, nutrient composition and vesicular-arbuscular mycorrhizal colonization of pretransplant rice (Oryza sativa L.) plants , 1992, Biology and Fertility of Soils.

[68]  F. Thseng,et al.  Studies on the flooding tolerance of soybean seed: varietal differences , 1991, Euphytica.

[69]  H. Sugimoto,et al.  Excess Moisture Injury of Soybeans Cultivated in an Upland Field Converted from Paddy : IV. The significance of nodulation under excess moisture condition , 1990 .

[70]  S. Ragupathy,et al.  Occurrence of vesicular — Arbuscular mycorrhizae in tropical hydrophytes , 1990 .

[71]  A. Sengupta,et al.  Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges river delta in West Bengal (India) , 1990, Plant and Soil.

[72]  M. Sachs,et al.  The anaerobic response of soybean. , 1990, Plant physiology.

[73]  H. D. Scott,et al.  Flood duration effects on soybean growth and yield , 1989 .

[74]  A. Saxton,et al.  Response of Solid-Seeded Soybean to Flood Irrigation. II. Flood Duration , 1988 .

[75]  J. Wilson A review of evidence on the control of shoot: root ratio , 1988 .

[76]  H. D. Scott,et al.  EFFECTS OF PROLONGED FLOODING ON SOYBEANS DURING EARLY VEGETATIVE GROWTH1 , 1987 .

[77]  C. Tanner,et al.  Effects of vesicular-arbuscular mycorrhizas on growth and nutrition of a submerged aquatic plant , 1985 .

[78]  R. Anderson,et al.  Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient , 1984, Oecologia.

[79]  S. L. Albrecht,et al.  Drought and flooding effects on N2 fixation, water relations, and diffusive resistance of soybean , 1984 .

[80]  P. Tinker,et al.  THE DISTRIBUTION OF CARBON AND THE DEMAND OF THE FUNGAL SYMBIONT IN LEEK PLANTS WITH VESICULAR-ARBUSCULAR MYCORRHIZAS , 1982 .

[81]  M. Kawase EFFECT OF ETHYLENE ON AERENCHYMA DEVELOPMENT , 1981 .

[82]  M. Drew,et al.  The Development of Waterlogging Damage in Young Wheat Plants in Anaerobic Solution Cultures , 1980 .

[83]  K. Bradford,et al.  Xylem Transport of 1-Aminocyclopropane-1-carboxylic Acid, an Ethylene Precursor, in Waterlogged Tomato Plants. , 1980, Plant physiology.

[84]  D. Focht,et al.  Denitrification in Rhizobium. , 1978, Canadian journal of microbiology.

[85]  M. Søndergaard,et al.  Vesicular-arbuscular mycorrhiza in some aquatic vascular plants , 1977 .

[86]  R. Yaklich,et al.  Variability in Metabolism of Individual Axes of Soybean Seeds and Its Relationship to Vigor 1 , 1975 .

[87]  J. Sprent,et al.  Surface features of soybean root nodules , 1975, Protoplasma.

[88]  P J Kramer,et al.  CAUSES OF INJURY TO PLANTS RESULTING FROM FLOODING OF THE SOIL. , 1951, Plant physiology.

[89]  N. Arora,et al.  Plant growth promoting rhizobacteria to alleviate soybean growth under abiotic and biotic stresses , 2016 .

[90]  H. Nguyen,et al.  Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. , 2015, Plant physiology and biochemistry : PPB.

[91]  N. Arora,et al.  Plant growth promoting rhizobacteria for ameliorating abiotic stresses triggered due to climatic variability , 2013 .

[92]  C. A. King,et al.  The response and recovery of nitrogen fixation activity in soybean to water deficit at different reproductive developmental stages , 2013 .

[93]  S. Komatsu,et al.  Proteomics techniques for the development of flood tolerant crops. , 2012, Journal of proteome research.

[94]  Ammara Maryam,et al.  A Review: Water Logging Effects on Morphological, Anatomical, Physiological and Biochemical Attributes of Food and Cash Crops , 2012 .

[95]  Guanghua Wang,et al.  Effects of short-term drought and flooding on soybean nodulation and yield at key nodulation stage under pot culture , 2012 .

[96]  S. Karki,et al.  Alcohol dehydrogenase (ADH) activity in soybean (Glycine max [L.] Merr.) under flooding stress , 2011 .

[97]  T. Ohyama,et al.  Effect of sigmoidal releasing-type coated urea fertilizer and ridge tillage on nitrogen accumulation and rate of side-wrinkled seeds in soybean cultivated in rotated paddy fields under poor drainage conditions. , 2010 .

[98]  C. Joly,et al.  Flooding tolerance of Tabebuia cassinoides: Metabolic, morphological and growth responses , 2009 .

[99]  D. Sleper,et al.  Yield and nutritional responses to waterlogging of soybean cultivars , 2009, Irrigation Science.

[100]  C. Cruz,et al.  How do Mycorrhizas Affect C and N Relationships in Flooded Aster tripolium Plants? , 2005, Plant and Soil.

[101]  J. Arihara,et al.  The effect of flooding stress at the germination stage on the growth of soybean [Glycine max] in relation to initial seed moisture content , 2004 .

[102]  M. Jackson,et al.  Physiology, Biochemistry and Molecular Biology of Plant Root Systems Subjected to Flooding of the Soil , 2003 .

[103]  J. Pires,et al.  Adaptações morfofisiológicas da soja em solo inundado , 2002 .

[104]  B. Glick,et al.  Ethylene and flooding stress in plants , 2001 .

[105]  Matthew B. Sullivan,et al.  Evaluating On‐Farm Flooding Impacts on Soybean , 2001 .

[106]  Bernard R. Glick,et al.  Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria , 2001 .

[107]  M. Jackson,et al.  Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty , 1998 .

[108]  M. Jackson,et al.  Plant adaptations to anaerobic stress , 1997 .

[109]  Y. Kwon,et al.  Physiological Response of Soybean under Excessive Soil Water Stress during Vegetative Growth Period , 1995 .

[110]  L. Heatherly,et al.  Soybean cultivars' response to flood irrigation of clay soil , 1991 .

[111]  L. Copeland,et al.  CARBON METABOLISM AND COMPARTMENTATION IN NITROGEN-FIXING LEGUME NODULES , 1991 .

[112]  H. D. Scott,et al.  Physiological responses of two soybean [glycine max (L.) Merr] cultivars to short-term flooding , 1990 .

[113]  J. Keeley Endomycorrhizae influence growth of blackgum seedlings in flooded soils. , 1980 .

[114]  J. Sprent,et al.  Anaerobiosis in soybean root nodules under water stress , 1976 .

[115]  Albert R. Grable Soil Aeration and Plant Growth , 1966 .