Wide-Angle and Polarization-Insensitive Perfect Absorber for Organic Photovoltaic Layers

In this letter, we computationally explore a wide-angle and polarization-insensitive perfect absorber based on hybrid metal-dielectric-metal structures. By introducing an organic photovoltaic layer between top metallic nanopatterns and a continuous metal bottom plate, an enhanced angle-and polarization-insensitive absorption can be obtained in the spectral range 400-700 nm, which is promising to realize improved thin-film organic photovoltaic devices. The physical mechanism of the perfect absorber is explained theoretically and numerically by the critical coupling principle.

[1]  Haifeng Hu,et al.  Polarization-Insensitive Metal–Semiconductor–Metal Nanoplasmonic Structures for Ultrafast Ultraviolet Detectors , 2013, Plasmonics.

[2]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[3]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[4]  W. K. Anderson,et al.  Polarization-insensitive metal-semiconductor-metal nanostructures for ultra-fast UV detectors , 2012 .

[5]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[6]  Ole Albrektsen,et al.  Efficient absorption of visible radiation by gap plasmon resonators. , 2012, Optics express.

[7]  Xing Zhu,et al.  Tunable wide-angle plasmonic perfect absorber at visible frequencies , 2012 .

[8]  K. Ho,et al.  Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes. , 2012, Optics express.

[9]  Yia-Chung Chang,et al.  Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. , 2012, Optics express.

[10]  Sharlene A. Lewis,et al.  Organic photovoltaic cells with nano-fabric heterojunction structure , 2012 .

[11]  Debra J. Mascaro,et al.  Spin-enhanced organic bulk heterojunction photovoltaic solar cells , 2012, Nature Communications.

[12]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[13]  Gennady Shvets,et al.  Design of metamaterial surfaces with broadband absorbance. , 2011, Optics letters.

[14]  Harald Giessen,et al.  Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. , 2011, Nano letters.

[15]  Lionel Hirsch,et al.  P3HT:PCBM, Best Seller in Polymer Photovoltaic Research , 2011, Advanced materials.

[16]  N. Fang,et al.  A thin film broadband absorber based on multi-sized nanoantennas , 2011, 1108.0459.

[17]  Xi Chen,et al.  Omnidirectional absorption enhancement in hybrid waveguide-plasmon system , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[18]  Zhe Wu,et al.  Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres , 2011 .

[19]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[20]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[21]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[22]  Vasyl G. Kravets,et al.  Plasmonic blackbody : Almost complete absorption of light in nanostructured metallic coatings , 2008 .

[23]  Jeremy J. Baumberg,et al.  Omnidirectional absorption in nanostructured metal surfaces , 2008 .

[24]  Christoph J. Brabec,et al.  Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence , 2007 .

[25]  H. Haus Waves and fields in optoelectronics , 1983 .

[26]  Federico Capasso,et al.  Nanometre optical coatings based on strong interference effects in highly absorbing media. , 2013, Nature materials.