Occupation Time for Classical and Quantum Walks
暂无分享,去创建一个
F. A. Grunbaum | L. Velazquez | J. Wilkening | F. Grünbaum | F. Grunbaum | L. Velázquez | J. Wilkening | L. Velázquez
[1] K. Chung,et al. On fluctuations in coin tossing. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[2] J. Bourgain,et al. Communications in Mathematical Physics Quantum Recurrence of a Subspace and Operator-Valued Schur Functions , 2022 .
[3] H. Krovi,et al. Hitting time for quantum walks on the hypercube (8 pages) , 2005, quant-ph/0510136.
[4] Friedrich Riesz. Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung , 1918 .
[5] F. Grunbaum,et al. A generalization of Schur functions: Applications to Nevanlinna functions, orthogonal polynomials, random walks and unitary and open quantum walks , 2017, 1702.04032.
[6] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[7] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[8] A. H. Werner,et al. Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases , 2019, Communications in mathematical physics.
[9] F. A. Grunbaum,et al. Matrix‐valued Szegő polynomials and quantum random walks , 2009, 0901.2244.
[10] Norio Konno,et al. Sojourn times of the Hadamard walk in one dimension , 2011, Quantum Inf. Process..
[11] F. Grünbaum. A Feyman-Kac approach to a paper of Chung and Feller on fluctuations in the coin-tossing game , 2018 .
[12] Michel Loève,et al. Probability Theory I , 1977 .
[13] Etsuo Segawa,et al. Localization of discrete-time quantum walks on a half line via the CGMV method , 2010, 1008.5109.
[14] Aharonov,et al. Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[15] M. J. Cantero,et al. The CGMV method for quantum walks , 2012, Quantum Inf. Process..
[16] Etsuo Segawa,et al. One-dimensional quantum walks via generating function and the CGMV method , 2014, Quantum Inf. Comput..
[17] Larry A. Shepp,et al. On occupation times of the first and third quadrants for planar Brownian motion , 2016, J. Appl. Probab..
[18] M. Kac. On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .
[19] Sakinah,et al. Vol. , 2020, New Medit.
[20] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[21] C. F. Lardizabal,et al. Quantum Markov Chains: Recurrence, Schur Functions and Splitting Rules , 2019, Annales Henri Poincaré.
[22] Julia Kempe,et al. Quantum random walks: An introductory overview , 2003, quant-ph/0303081.
[23] P. Levy. Sur certains processus stochastiques homogènes , 1940 .
[24] Aharonov,et al. Quantum Walks , 2012, 1207.7283.
[25] Alberto Grunbaum. A Feynman-Kac approach to a paper of Chung and Feller on fluctuations in the coin-tossing game , 2018, Proceedings of the American Mathematical Society.
[26] A. H. Werner,et al. Recurrence for Discrete Time Unitary Evolutions , 2012, 1202.3903.
[27] Abubakr Gafar Abdalla,et al. Probability Theory , 2017, Encyclopedia of GIS.