Occupation Time for Classical and Quantum Walks

This is a personal tribute to Lance Littlejohn on the occasion of his 70th birthday. It is meant as a present to him for many years of friendship. It is not written in the "Satz-Beweis" style of Edmund Landau or even in the format of a standard mathematics paper. It is rather an invitation to a fairly new, largely unexplored, topic in the hope that Lance will read it some afternoon and enjoy it. If he cares about complete proofs he will have to wait a bit longer; we almost have them but not in time for this volume. We hope that the figures will convince him and other readers that the phenomena displayed here are interesting enough.

[1]  K. Chung,et al.  On fluctuations in coin tossing. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Bourgain,et al.  Communications in Mathematical Physics Quantum Recurrence of a Subspace and Operator-Valued Schur Functions , 2022 .

[3]  H. Krovi,et al.  Hitting time for quantum walks on the hypercube (8 pages) , 2005, quant-ph/0510136.

[4]  Friedrich Riesz Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung , 1918 .

[5]  F. Grunbaum,et al.  A generalization of Schur functions: Applications to Nevanlinna functions, orthogonal polynomials, random walks and unitary and open quantum walks , 2017, 1702.04032.

[6]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[7]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[8]  A. H. Werner,et al.  Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases , 2019, Communications in mathematical physics.

[9]  F. A. Grunbaum,et al.  Matrix‐valued Szegő polynomials and quantum random walks , 2009, 0901.2244.

[10]  Norio Konno,et al.  Sojourn times of the Hadamard walk in one dimension , 2011, Quantum Inf. Process..

[11]  F. Grünbaum A Feyman-Kac approach to a paper of Chung and Feller on fluctuations in the coin-tossing game , 2018 .

[12]  Michel Loève,et al.  Probability Theory I , 1977 .

[13]  Etsuo Segawa,et al.  Localization of discrete-time quantum walks on a half line via the CGMV method , 2010, 1008.5109.

[14]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[15]  M. J. Cantero,et al.  The CGMV method for quantum walks , 2012, Quantum Inf. Process..

[16]  Etsuo Segawa,et al.  One-dimensional quantum walks via generating function and the CGMV method , 2014, Quantum Inf. Comput..

[17]  Larry A. Shepp,et al.  On occupation times of the first and third quadrants for planar Brownian motion , 2016, J. Appl. Probab..

[18]  M. Kac On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .

[19]  Sakinah,et al.  Vol. , 2020, New Medit.

[20]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[21]  C. F. Lardizabal,et al.  Quantum Markov Chains: Recurrence, Schur Functions and Splitting Rules , 2019, Annales Henri Poincaré.

[22]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[23]  P. Levy Sur certains processus stochastiques homogènes , 1940 .

[24]  Aharonov,et al.  Quantum Walks , 2012, 1207.7283.

[25]  Alberto Grunbaum A Feynman-Kac approach to a paper of Chung and Feller on fluctuations in the coin-tossing game , 2018, Proceedings of the American Mathematical Society.

[26]  A. H. Werner,et al.  Recurrence for Discrete Time Unitary Evolutions , 2012, 1202.3903.

[27]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.