A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD

The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases. We have previously shown that a founder haplotype, covering the MOBKL2b, IFNK, and C9ORF72 genes, is present in the majority of cases linked to this region. Here we show that there is a large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72 on the affected haplotype. This repeat expansion segregates perfectly with disease in the Finnish population, underlying 46.0% of familial ALS and 21.1% of sporadic ALS in that population. Taken together with the D90A SOD1 mutation, 87% of familial ALS in Finland is now explained by a simple monogenic cause. The repeat expansion is also present in one-third of familial ALS cases of outbred European descent, making it the most common genetic cause of these fatal neurodegenerative diseases identified to date.

David Heckerman | Lorne Zinman | Joanne Wuu | Michael Benatar | Can Alkan | Sonja W. Scholz | Adriano Chiò | Richard W. Orrell | Veli-Matti Isoviita | Evan E. Eichler | John Hardy | Yevgeniya Abramzon | Jennifer C. Schymick | Mario Sabatelli | Gabriella Restagno | Bryan J. Traynor | Michael Sendtner | Alan E. Renton | Peter Heutink | Anne M. Remes | Kate Young | Jeffrey D. Rothstein | Elina Ikonen | Huw R. Morris | Ekaterina Rogaeva | John C. van Swieten | Mina Ryten | Maarit Hölttä-Vuori | Janel O. Johnson | David Mann | Sara Rollinson | D. Heckerman | D. Hernandez | M. Nalls | E. Eichler | C. Alkan | A. Paetau | T. Peuralinna | A. Dutra | J. Hardy | D. Neary | N. Williams | D. Mann | R. Guerreiro | A. Chiò | B. Traynor | E. Ikonen | S. Rollinson | M. Benatar | J. Wuu | R. Orrell | J. Rothstein | I. Jansen | M. Ryten | P. Heutink | E. Rogaeva | R. Sulkava | A. Richardson | S. Scholz | J. Simón‐Sánchez | J. R. Gibbs | J. Schymick | H. Morris | L. Zinman | A. Renton | E. Majounie | J. Pearson | M. Sendtner | A. Kaganovich | S. Pickering-Brown | J. Swieten | P. Tienari | H. Kalimo | D. Blake | Z. Abdullaev | H. Seelaar | J. Neal | A. Gerhard | G. Restagno | Jinhui Ding | M. Sabatelli | A. Remes | H. Laaksovirta | David Sondervan | D. Harmer | K. Mok | J. Snowden | C. Drepper | L. Myllykangas | Dena G. Hernandez | Michael A. Nalls | Stuart Pickering-Brown | David Neary | A. Waite | Yevgeniya A Abramzon | J. Duckworth | D. Trabzuni | A. Murray | K. Young | Nicola A. Halliwell | J. Callister | G. Toulson | Lilja Jansson | Veli-Matti Isoviita | Anna-Lotta Kaivorinne | M. Hölttä-Vuori | G. Borghero | S. Pack | E. Pak | A. Singleton | Hannu Laaksovirta | Terhi Peuralinna | Liisa Myllykangas | Raimo Sulkava | Lilja Jansson | Amalia Dutra | Evgenia Pak | Anders Paetau | Hannu Kalimo | Carsten Drepper | Anna Richardson | Harro Seelaar | Iris E. Jansen | Alex Gerhard | Pentti J. Tienari | Elisa Majounie | Giuseppe Borghero | Nigel M. Williams | J. Raphael Gibbs | Andrew Singleton | Jinhui Ding | Justin Pearson | Javier Simón-Sánchez | Kin Mok | David Sondervan | Rita J. Guerreiro | Adrian Waite | Alice Kaganovich | Jamie Duckworth | Daniel W. Harmer | Danyah Trabzuni | James Neal | Alex Murray | Derek Blake | Nicola Halliwell | Janis Bennion Callister | Greg Toulson | Julie Snowden | Anna-Lotta Kaivorinne | Ziedulla Abdullaev | Svetlana D. Pack | Kate Young | Yevgeniya A. Abramzon | J. Simón-Sánchez | Jennifer Schymick | Alice Kaganovich | J. Hardy | Hannu Laaksovirta

[1]  I. Mackenzie,et al.  TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia , 2010, The Lancet Neurology.

[2]  D. Goudie,et al.  A general method for the detection of large CAG repeat expansions by fluorescent PCR. , 1996, Journal of medical genetics.

[3]  A. Kaplin,et al.  HOW COMMON ARE THE “COMMON” NEUROLOGIC DISORDERS? , 2007, Neurology.

[4]  A. Chiò,et al.  Prevalence of SOD1 mutations in the Italian ALS population , 2008, Neurology.

[5]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[6]  D. Hernandez,et al.  Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p , 2011, Journal of Neurology.

[7]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[8]  David Heckerman,et al.  Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study , 2010, The Lancet Neurology.

[9]  Lin Jin,et al.  Aberrant RNA Processing in a Neurodegenerative Disease: the Cause for Absent EAAT2, a Glutamate Transporter, in Amyotrophic Lateral Sclerosis , 1998, Neuron.

[10]  K. Kidd,et al.  Chromosomal localization of long trinucleotide repeats in the human genome by fluorescence in situ hybridization , 1996, Nature Genetics.

[11]  Thomas Liehr,et al.  Fluorescence In Situ Hybridization (FISH) — Application Guide , 2009, Springer Berlin Heidelberg.

[12]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[13]  L. Rowland,et al.  Amyotrophic Lateral Sclerosis , 1980, Neurology.

[14]  A. Ramasamy,et al.  Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies , 2011, Journal of neurochemistry.

[15]  D. Thurman,et al.  How common are the “common” neurologic disorders? , 2007, Neurology.

[16]  F. Baas,et al.  Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. , 2006, Brain : a journal of neurology.

[17]  P. Espenshade,et al.  Transport-Dependent Proteolysis of SREBP Relocation of Site-1 Protease from Golgi to ER Obviates the Need for SREBP Transport to Golgi , 1999, Cell.

[18]  H. Horvitz,et al.  A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia , 2006, Neurology.

[19]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[20]  Koji Abe,et al.  Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. , 2011, American journal of human genetics.

[21]  Jonathan Scott Friedlaender,et al.  A Human Genome Diversity Cell Line Panel , 2002, Science.

[22]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[23]  B. Boeve,et al.  Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[24]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[25]  A. Farmer,et al.  Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.

[26]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[27]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[28]  M. Nalls,et al.  The chromosome 9 ALS and FTD locus is probably derived from a single founder , 2012, Neurobiology of Aging.

[29]  Marzena Wojciechowska,et al.  Cellular toxicity of expanded RNA repeats: focus on RNA foci , 2011, Human molecular genetics.

[30]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[31]  J. Hodges,et al.  Frontotemporal dementia and motor neurone disease: Overlapping clinic-pathological disorders , 2009, Journal of Clinical Neuroscience.

[32]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[33]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[34]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[35]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[36]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.