On Certain Parallel Toeplitz Linear System Solvers

In this paper we describe three algorithms for solving positive-definite banded Toeplitz systems of linear equations on parallel computers. Assuming we have $4mn$ processors, where n is the order of the system and m is the number of super- or subdiagonals, each system may be solved in $O(m\log n)$ time steps. Numerical experiments that compare the behavior of these algorithms in solving pentadiagonal Toeplitz systems are presented.

[1]  Seymour V. Parter An observation on the numerical solution of difference equations and a theorem of Szegö , 1962 .

[2]  G. Wilson Factorization of the Covariance Generating Function of a Pure Moving Average Process , 1969 .

[3]  I. Gohberg,et al.  Asymptotic properties of Toeplitz matrix factorization , 1978 .

[4]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[5]  J. Rissanen Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with application to factoring positive matrix polynomials , 1973 .

[6]  Martin Morf,et al.  Doubling algorithms for Toeplitz and related equations , 1980, ICASSP.

[7]  Shalhav Zohar,et al.  Toeplitz Matrix Inversion: The Algorithm of W. F. Trench , 1969, JACM.

[8]  A. Buckley,et al.  On the Solution of Certain Skew Symmetric Linear Systems , 1977 .

[9]  G. Alistair Watson,et al.  An Algorithm for the Inversion of Block Matrices of Toeplitz Form , 1973, JACM.

[10]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[11]  D. Heller A Survey of Parallel Algorithms in Numerical Linear Algebra. , 1978 .

[12]  Thomas Kailath,et al.  Recent Results in Least-Squares Estimation Theory , 1977 .

[13]  J. Rissanen,et al.  1972 IFAC congress paper: Partial realization of random systems , 1972 .

[14]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[15]  Jorma Rissanen,et al.  Solution of linear equations with Hankel and Toeplitz matrices , 1974 .

[16]  Marshall C. Pease,et al.  An Adaptation of the Fast Fourier Transform for Parallel Processing , 1968, JACM.

[17]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[18]  The Szegö Recursion Relation and Inverses of Positive Definite Toeplitz Matrices , 1974 .

[19]  D. Heller Some Aspects of the Cyclic Reduction Algorithm for Block Tridiagonal Linear Systems , 1976 .

[20]  A. Cantoni,et al.  Eigenvalues and eigenvectors of symmetric centrosymmetric matrices , 1976 .

[21]  Gene H. Golub,et al.  On Fourier-Toeplitz methods for separable elliptic problems , 1974 .

[22]  William F. Trench,et al.  An Algorithm for the Inversion of Finite Hankel Matrices , 1965 .

[23]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[24]  James L. Phillips The triangular decomposition of Hankel matrices , 1971 .

[25]  E. Bareiss Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices , 1969 .

[26]  P. Swarztrauber A direct Method for the Discrete Solution of Separable Elliptic Equations , 1974 .