Iterated Local Search

Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for a given optimization engine. The success of Iterated Local Search lies in the biased sampling of this set of local optima. How effective this approach turns out to be depends mainly on the choice of the local search, the perturbations, and the acceptance criterion. So far, in spite of its conceptual simplicity, it has lead to a number of state-of-the-art results without the use of too much problem- specific knowledge. But with further work so that the different modules are well adapted to the problem at hand, Iterated Local Search can often become a competitive or even state of the art algorithm. The purpose of this review is both to give a detailed description of this metaheuristic and to show where it stands in terms of performance.

[1]  Matthijs den Besten,et al.  Design of Iterated Local Search Algorithms , 2001, EvoWorkshops.

[2]  Forschungsinstitut für Diskrete Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003 .

[3]  Celso C. Ribeiro,et al.  Local search with perturbations for the prize‐collecting Steiner tree problem in graphs , 2001, Networks.

[4]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  Nenad Mladenović,et al.  An Introduction to Variable Neighborhood Search , 1997 .

[7]  Olivier C. Martin,et al.  Combining simulated annealing with local search heuristics , 1993, Ann. Oper. Res..

[8]  Heinz Mühlenbein,et al.  Evolution in Time and Space - The Parallel Genetic Algorithm , 1990, FOGA.

[9]  Giovanni Manzini,et al.  Perturbation: An Efficient Technique for the Solution of Very Large Instances of the Euclidean TSP , 1996, INFORMS J. Comput..

[10]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[11]  Thomas Sttzle,et al.  Applying iterated local search to the permutation ow shop problem , 1998 .

[12]  Andrew B. Kahng,et al.  Improved Large-Step Markov Chain Variants for the Symmetric TSP , 1997, J. Heuristics.

[13]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[14]  Chris N. Potts,et al.  An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem , 2002, INFORMS J. Comput..

[15]  K. Katayama,et al.  Iterated local search approach using genetic transformation to the traveling salesman problem , 1999 .

[16]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[17]  Roberto Battiti,et al.  Reactive Search, a history-based heuristic for MAX-SAT , 1996 .

[18]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[19]  Abraham P. Punnen,et al.  A survey of very large-scale neighborhood search techniques , 2002, Discret. Appl. Math..

[20]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[21]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[22]  Michael Pinedo,et al.  A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop , 1999 .

[23]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[24]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[25]  E. Baum Towards practical `neural' computation for combinatorial optimization problems , 1987 .

[26]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[27]  Olivier C. Martin,et al.  Partitioning of unstructured meshes for load balancing , 1995, Concurr. Pract. Exp..

[28]  Schloss Birlinghoven Evolution in Time and Space -the Parallel Genetic Algorithm , 1991 .

[29]  G. R. Schreiber,et al.  Cut Size Statistics of Graph Bisection Heuristics , 1999, SIAM J. Optim..

[30]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[31]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[32]  Cyril Fonlupt,et al.  Fitness Landscapes and Performance of Meta-Heuristics , 1999 .

[33]  Chris N. Potts,et al.  Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..

[34]  Helena Ramalhinho Dias Lourenço,et al.  A Polynomial Algorithm for Special Case of the One-Machine Scheduling Problem with Time-Lags , 1999 .

[35]  Chris N. Potts,et al.  A comparison of local search methods for flow shop scheduling , 1996, Ann. Oper. Res..

[36]  Inyong Ham,et al.  A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem , 1983 .

[37]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[38]  Egon Balas,et al.  Guided Local Search with Shifting Bottleneck for Job Shop Scheduling , 1998 .

[39]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[40]  Thomas Stützle,et al.  Local search algorithms for combinatorial problems - analysis, improvements, and new applications , 1999, DISKI.

[41]  S. Kreipl A large step random walk for minimizing total weighted tardiness in a job shop , 2000 .

[42]  Bernd Freisleben,et al.  Fitness Landscapes, Memetic Algorithms, and Greedy Operators for Graph Bipartitioning , 2000, Evolutionary Computation.

[43]  Jan Karel Lenstra,et al.  Job Shop Scheduling by Local Search , 1996, INFORMS J. Comput..

[44]  David S. Johnson,et al.  Local Optimization and the Traveling Salesman Problem , 1990, ICALP.

[45]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[46]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[47]  Fred W. Glover,et al.  Finding a best traveling salesman 4-opt move in the same time as a best 2-opt move , 1996, J. Heuristics.

[48]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[49]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[50]  J. Carlier The one-machine sequencing problem , 1982 .

[51]  Emile H. L. Aarts,et al.  Genetic Local Search Algorithms for the Travelling Salesman Problem , 1990, PPSN.

[52]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[53]  Thomas Stützle,et al.  A Comparison of Nature Inspired Heuristics on the Traveling Salesman Problem , 2000, PPSN.

[54]  Edward W. Felten,et al.  Large-Step Markov Chains for the Traveling Salesman Problem , 1991, Complex Syst..

[55]  John Baxter,et al.  Local Optima Avoidance in Depot Location , 1981 .

[56]  R. Haupt,et al.  A survey of priority rule-based scheduling , 1989 .

[57]  ČernýV. Thermodynamical approach to the traveling salesman problem , 1985 .

[58]  Fred Glover,et al.  Scatter Search and Path Relinking: Advances and Applications , 2003, Handbook of Metaheuristics.

[59]  William J. Cook,et al.  Finding Tours in the TSP , 1999 .

[60]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[61]  É. Taillard Some efficient heuristic methods for the flow shop sequencing problem , 1990 .

[62]  Peter Brucker,et al.  Improving Local Search Heuristics for some Scheduling Problems. Part II , 1996, Discret. Appl. Math..

[63]  Pierre Hansen,et al.  J-MEANS: a new local search heuristic for minimum sum of squares clustering , 1999, Pattern Recognit..

[64]  Andrew B. Kahng,et al.  Old Bachelor Acceptance: A New Class of Non-Monotone Threshold Accepting Methods , 1995, INFORMS J. Comput..

[65]  David P. Williamson,et al.  Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees, with Applications to Matching and Set Cover , 1993, ICALP.

[66]  Roberto Battiti,et al.  Greedy, Prohibition, and Reactive Heuristics for Graph Partitioning , 1999, IEEE Trans. Computers.

[67]  Roberto Battiti,et al.  Reactive search, a history-sensitive heuristic for MAX-SAT , 1997, JEAL.

[68]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[69]  T. Stützle,et al.  Analyzing the Run-time Behaviour of Iterated Local Search for the TSP , 1999 .

[70]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[71]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[72]  F. Glover Scatter search and path relinking , 1999 .

[73]  Fred W. Glover,et al.  Tabu Thresholding: Improved Search by Nonmonotonic Trajectories , 1995, INFORMS J. Comput..

[74]  Helena Ramalhinho Dias Lourenço,et al.  Job-shop scheduling: Computational study of local search and large-step optimization methods , 1995 .

[75]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[76]  Michael Pinedo,et al.  Heuristics for minimizing total weighted tardiness in flexible flow shops , 2000 .

[77]  Helena Ramalhinho Dias Lourenço,et al.  Combining the Large-Step Optimization with Tabu-Search: Application to The Job-Shop Scheduling Problem , 1996 .

[78]  É. Taillard COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .

[79]  Jan Karel Lenstra,et al.  A local search template , 1998, Comput. Oper. Res..