A Semantic-Based Approach for Landscape Identification

Here we present an original method for the automation of landscape identification in a satellite image. There are two major challenges in this process. The first lies in the ability to take all expert knowledge into account for the full time it takes to analyze the image. The second is successfully structuring and persisting this knowledge so that it becomes interoperable and usable in the Semantic Web context. In this paper, we explain how the combination of several strategies associating image processing, the calculation of specific characteristics and inductive logic programming (ILP) can feed into the automation process, and how the integration of knowledge via the construction of dedicated ontologies can meet these challenges.

[1]  Dave Kolas,et al.  Enabling the geospatial Semantic Web with Parliament and GeoSPARQL , 2012, Semantic Web.

[2]  Egor V. Kostylev,et al.  CONSTRUCT Queries in SPARQL , 2015, ICDT.

[3]  L. Fahrig Effects of Habitat Fragmentation on Biodiversity , 2003 .

[4]  Younès Bennani,et al.  Towards Ontology Reasoning for Topological Cluster Labeling , 2016, ICONIP.

[5]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[6]  S. Muggleton,et al.  Gene Function Hypotheses for the Campylobacter jejuni Glycome Generated by a Logic-Based Approach , 2013, Journal of molecular biology.

[7]  Ryszard S. Michalski,et al.  A Theory and Methodology of Inductive Learning , 1983, Artificial Intelligence.

[8]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[9]  Germain Forestier,et al.  Knowledge-based region labeling for remote sensing image interpretation , 2012, Comput. Environ. Urban Syst..

[10]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[11]  Vítor Santos Costa,et al.  Inductive Logic Programming , 2013, Lecture Notes in Computer Science.

[12]  Jens Lehmann,et al.  LinkedGeoData: Adding a Spatial Dimension to the Web of Data , 2009, SEMWEB.

[13]  Birgit Kleinschmit,et al.  An ontological system for interoperable spatial generalisation in biodiversity monitoring , 2015, Comput. Geosci..

[14]  Olivier Poch,et al.  Knowledge Discovery in Variant Databases Using Inductive Logic Programming , 2013, Bioinformatics and biology insights.

[15]  M. Enserink Biological Invaders Sweep In , 1999, Science.

[16]  Ricardo Lopes,et al.  Spatial-Yap: A Logic-Based Geographic Information System , 2007, ICLP.

[17]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[18]  Damien Arvor,et al.  Ontology-based classification of remote sensing images using spectral rules , 2017, Comput. Geosci..

[19]  Thomas Blaschke,et al.  Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data , 2014, Remote. Sens..

[20]  Bjørn K. Alsberg,et al.  Microarray data classification using inductive logic programming and gene ontology background information , 2010 .

[21]  H. Shaffer,et al.  Annual review of ecology, evolution, and systematics , 2003 .

[22]  Ismail Hakki Toroslu,et al.  A comparative study on ILP-based concept discovery systems , 2011, Expert Syst. Appl..

[23]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[24]  Ian Horrocks,et al.  OWL Web Ontology Language Reference-W3C Recommen-dation , 2004 .

[25]  L. Durieux,et al.  Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective , 2013 .

[26]  A. Massé Développement et automatisation de méthodes de classification à partir de séries temporelles d'images de télédétection - Application aux changements d'occupation des sols et à l'estimation du bilan carbone , 2013 .

[27]  Richard Nock,et al.  Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana , 2015, Comput. Geosci..

[28]  Ross D. King,et al.  Applying Inductive Logic Programming to Predicting Gene Function , 2004, AI Mag..

[29]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[30]  Germain Forestier,et al.  Coastal image interpretation using background knowledge and semantics , 2013, Comput. Geosci..

[31]  Saso Dzeroski,et al.  Inductive Logic Programming: Techniques and Applications , 1993 .

[32]  Mariana Belgiu,et al.  Ontology based interpretation of Very High Resolution imageries – grounding ontologies on visual interpretation keys , 2013 .

[33]  Ryszard S. Michalski,et al.  A theory and methodology of inductive learning , 1993 .

[34]  Donato Malerba,et al.  Empowering a GIS with inductive learning capabilities: the case of INGENS , 2003, Comput. Environ. Urban Syst..

[35]  Almo Farina,et al.  Landscape Ecology in Action , 2000, Springer Netherlands.