Nonlinear tracking control of a dc motor via a boost-converter using linear dynamic output feedback

In this contribution a tracking controller for the shaft angular velocity of a DC motor connected to a boost type power converter is designed. This system is not flat and the internal dynamics with respect to the angular velocity are unstable. A linear dynamic output feedback controller is designed which stabilizes the linearized tracking error dynamics about the reference trajectory. To this end, the results in (J. Deutscher, 2002), (F. Antritter et al., 2004) for the design of linear tracking controllers for flat systems are extended to non-flat systems. The differences to the controller design using the state space approach for linear time varying systems are discussed

[1]  Johann Reger,et al.  FLATNESS BASED CONTROL OF A BUCK-CONVERTER DRIVEN DC MOTOR , 2006 .

[2]  Joachim Deutscher,et al.  Tracking control for nonlinear flat systems by linear dynamic output feedback , 2004 .

[3]  D. Luenberger An introduction to observers , 1971 .

[4]  Joachim Rudolph,et al.  Local tracking observers for flat systems , 1996 .

[5]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[6]  A. Isidori Nonlinear Control Systems , 1985 .

[7]  Johann Reger,et al.  A TIME-VARYING LINEAR STATE FEEDBACK TRACKING CONTROLLER FOR A BOOST-CONVERTER DRIVEN DC MOTOR , 2006 .

[8]  W. Wolovich On the stabilization of controllable systems , 1968 .

[9]  Joachim Deutscher A linear differential operator approach to flatness based tracking for linear and non-linear systems , 2003 .

[10]  Santosh Devasia,et al.  Output tracking between operating points for nonlinear processes: Van de Vusse example , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[11]  J. Lévine,et al.  Sufficient conditions for dynamic state feedback linearization , 1991 .

[12]  L. Silverman,et al.  Controllability and Observability in Time-Variable Linear Systems , 1967 .

[13]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[14]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[15]  Suttipan Limanond,et al.  Adaptive and non-adaptive "pole-placement" control of multivariable linear time-varying plants , 1994, Proceedings of 1994 American Control Conference - ACC '94.