AN ENERGETICALLY CONSISTENT VISCOUS SEDIMENTATION MODEL

In this paper we consider a two-dimensional viscous sedimentation model which is a viscous Shallow–Water system coupled with a diffusive equation that describes the evolution of the bottom. For this model, we prove the stability of weak solutions for periodic domains and give some numerical experiments. We also discuss around various discharge quantity choices.

[1]  C. Savary Transcritical transient flow over mobile beds Boundary conditions treatment in a two-layer shallow-water model , 2007 .

[2]  J. F. A. Sleath,et al.  Sediment transport by waves and currents , 1995 .

[3]  Manuel Jesús Castro Díaz,et al.  High Order Extensions of Roe Schemes for Two-Dimensional Nonconservative Hyperbolic Systems , 2009, J. Sci. Comput..

[4]  Didier Bresch,et al.  On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids , 2007 .

[5]  P. Orenga Un théorème d'existence de solutions d'un problème de shallow water , 1995 .

[6]  Carlos Parés,et al.  Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes , 2009 .

[7]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[8]  D. Bresch,et al.  An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit , 2005 .

[9]  Didier Bresch,et al.  On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models , 2006 .

[10]  Michael C. Quick,et al.  Sediment transport by waves and currents , 1983 .

[11]  D. Bresch,et al.  Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model , 2003 .

[12]  Antoine Mellet,et al.  On the Barotropic Compressible Navier–Stokes Equations , 2007 .

[13]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[14]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[15]  D. Bresch,et al.  On compressible Navier-Stokes equations with density dependent viscosities in bounded domains , 2007 .

[16]  Carlos Parés,et al.  On the well-balance property of Roe?s method for nonconservative hyperbolic systems , 2004 .

[17]  H. J. De Vriend Analysis of horizontally two‐dimensional morphological evolutions in shallow water , 1987 .