Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams.

Radiation force of a focused scalar twisted Gaussian Schell-model (TGSM) beam on a Rayleigh dielectric sphere is investigated. It is found that the twist phase affects the radiation force and by raising the absolute value of the twist factor it is possible to increase both transverse and longitudinal trapping ranges at the real focus where the maximum on-axis intensity is located. Numerical calculations of radiation forces induced by a focused electromagnetic TGSM beam on a Rayleigh dielectric sphere are carried out. It is found that radiation force is closely related to the twist phase, degree of polarization and correlation factors of the initial beam. The trapping stability is also discussed.

[1]  S. Ponomarenko,et al.  Twisted Gaussian Schell-model solitons. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Yangjian Cai,et al.  Second-harmonic generation by an astigmatic partially coherent beam. , 2007, Optics express.

[3]  A. Friberg,et al.  Interpretation and experimental demonstration of twisted Gaussian Schell-model beams , 1994 .

[4]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[5]  Shi-Yao Zhu,et al.  Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere. , 2007, Optics letters.

[6]  M. Suhail Zubairy,et al.  Second-harmonic generation by a gaussian schell-model source , 1986 .

[7]  Yangjian Cai,et al.  Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle , 2008, 2008 IEEE PhotonicsGlobal@Singapore.

[8]  Olga Korotkova,et al.  Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere. , 2008, Optics express.

[9]  Franco Gori,et al.  An example of a Collett-Wolf source , 1979 .

[10]  Jing Yong Ye,et al.  Trapping cavitation bubbles with a self-focused laser beam , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[11]  Wen-Feng Hsieh,et al.  Bottle beam from a bare laser for single-beam trapping. , 2004, Applied optics.

[12]  Radiometry and Radiation Efficiency of Twisted Gaussian Schell-Model Sources , 2001 .

[13]  Ari T. Friberg,et al.  Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems , 1996 .

[14]  Yangjian Cai,et al.  Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Yangjian Cai,et al.  Ghost imaging with twisted Gaussian Schell-model beam. , 2009, Optics express.

[16]  H. Kandpal,et al.  Experimental determination of electric cross-spectral density matrix and generalized Stokes parameters for a laser beam. , 2008, Optics letters.

[17]  E. Wolf Coherence and Polarization Properties of Electromagnetic Laser Modes , 2006 .

[18]  J. Kestin,et al.  Viscosity of Liquid Water in the Range - 8 C to 150 C, , 1978 .

[19]  Qingsheng He,et al.  Propagation and imaging experiments with Gaussian Schell-model beams , 1988 .

[20]  Olga Korotkova,et al.  A method of generating electromagnetic Gaussian Schell-model beams , 2005 .

[21]  J. Ricklin,et al.  Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Takahiro Kuga,et al.  Novel Optical Trap of Atoms with a Doughnut Beam , 1997 .

[23]  E. Wolf Unified theory of coherence and polarization of random electromagnetic beams , 2003 .

[24]  Daniel F. V. James,et al.  Change of polarization of light beams on propagation in free space , 1994 .

[25]  P. Meystre Introduction to the Theory of Coherence and Polarization of Light , 2007 .

[26]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[27]  Li-Xiang Hu,et al.  Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system. , 2006, Optics letters.

[28]  G P Agrawal,et al.  Propagation-induced polarization changes in partially coherent optical beams. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics , 1993 .

[30]  Q. Zhan Trapping metallic Rayleigh particles with radial polarization. , 2004, Optics express.

[31]  R. Simon,et al.  Twisted Gaussian Schell-model beams , 1993 .

[32]  Yangjian Cai,et al.  Fractional Fourier transform for partially coherent Gaussian-Schell model beams. , 2002, Optics letters.

[33]  Q. Lin,et al.  Radiation forces produced by standing wave trapping of non-paraxial Gaussian beams , 2001 .

[34]  F. Gori Matrix treatment for partially polarized, partially coherent beams. , 1998, Optics letters.

[35]  Yangjian Cai,et al.  Fractional Fourier transform for partially coherent and partially polarized Gaussian?Schell model beams , 2003 .

[36]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum , 1993 .

[37]  Olga Korotkova,et al.  The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence , 2004 .

[38]  O. Korotkova,et al.  Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity. , 2008, Optics letters.

[39]  J. Movilla,et al.  Orbital angular momentum of partially coherent beams. , 2001, Optics letters.

[40]  Mj Martin Bastiaans Application of the Wigner distribution function to partially coherent light , 1986 .

[41]  Olga Korotkova,et al.  Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source. , 2004, Optics letters.

[42]  Olga Korotkova,et al.  Realizability conditions for electromagnetic Gaussian Schell-model sources , 2005 .

[43]  O. Korotkova,et al.  Twist phase-induced polarization changes in electromagnetic Gaussian Schell-model beams , 2009 .

[44]  Dario Ambrosini,et al.  Twisted Gaussian Schell-model Beams: A Superposition Model , 1994 .

[45]  R. Simon,et al.  Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams , 1995 .

[46]  R. Simon,et al.  Twist phase in Gaussian-beam optics , 1998 .

[47]  Yangjian Cai,et al.  Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere , 2006 .

[48]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[49]  Arthur Ashkin,et al.  Trapping of Atoms by Resonance Radiation Pressure , 1978 .

[50]  F. Gori,et al.  Synthesis of partially polarized Gaussian Schell-model sources , 2002 .

[51]  Ronald J. Sudol,et al.  Propagation parameters of gaussian Schell-model beams , 1982 .

[52]  F. Gori,et al.  Realizability condition for electromagnetic Schell-model sources. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  F. Gori,et al.  Collett-Wolf sources and multimode lasers , 1980 .

[54]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[55]  E. Collett,et al.  Partially coherent sources which produce the same far-field intensity distribution as a laser , 1978 .

[56]  O. Korotkova,et al.  State of polarization of a stochastic electromagnetic beam in an optical resonator. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[57]  Franco Gori,et al.  Partially polarized Gaussian Schell-model beams , 2001 .

[58]  E. Wolf,et al.  Coherence-induced polarization changes in light beams. , 2008, Optics letters.

[59]  Yangjian Cai,et al.  Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams. , 2002, Optics letters.

[60]  Yangjian Cai,et al.  Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[61]  Yangjian Cai,et al.  Ghost imaging with incoherent and partially coherent light radiation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[63]  Gaussian Schell-model beams and general shape invariance , 1999 .

[64]  M J Bastiaans Wigner distribution function applied to twisted Gaussian light propagating in first-order optical systems. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[65]  C. Day Optical trap resolves the stepwise transfer of genetic information from DNA to RNA , 2006 .

[66]  Satoshi Kawata,et al.  Radiation Force Exerted on Subwavelength Particles near a Nanoaperture , 1999 .