Resilient Quantum Computation

Practical realization of quantum computers will require overcoming decoherence and operational errors, which lead to problems that are more severe than in classical computation. It is shown that arbitrarily accurate quantum computation is possible provided that the error per operation is below a threshold value.

[1]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[2]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[4]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[5]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[9]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[10]  Osamu Hirota,et al.  "Quantum Communication, Computing, and Measurement" , 2012 .

[11]  Juan Pablo Paz,et al.  QUANTUM COMPUTATION WITH PHASE DRIFT ERRORS , 1997 .

[12]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[13]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[14]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[15]  Roberto Gorrieri,et al.  Symposium on the Theory of Computation , 1999 .