Recent progress in ab initio simulations of hafnia-based gate stacks

The continuous size downscaling of complementary metal–oxide–semiconductor (CMOS) transistors has led to the replacement of SiO2 with a HfO2-based high dielectric constant (or high-k) oxide, and the polysilicon electrode with a metal gate. The approach to this technological evolution has spurred a plethora of fundamental research to address several pressing issues. This review focusses on the large body of first principles (or ab initio) computational work employing conventional density functional theory (DFT) and beyond-DFT calculations pertaining to HfO2-based dielectric stacks. Specifically, structural, thermodynamic, electronic, and point-defect properties of bulk HfO2, Si/HfO2 interfaces, and metal/HfO2 interfaces are covered in detail. Interfaces between HfO2 and substrates with high mobility such as Ge and GaAs are also briefly reviewed. In sum, first principles studies have provided important insights and guidances to the CMOS research community and are expected to play an even more important role in the future with the further optimization and “scaling down” of transistors.

[1]  A. Demkov,et al.  Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study , 2009 .

[2]  R. Ramprasad,et al.  Effective work function of metals interfaced with dielectrics: A first-principles study of the Pt-HfO2interface , 2011 .

[3]  Rampi Ramprasad,et al.  Diffusion of O vacancies nearSi:HfO2interfaces: Anab initioinvestigation , 2007 .

[4]  A. Pasquarello,et al.  Band-edge problem in the theoretical determination of defect energy levels: The O vacancy in ZnO as a benchmark case , 2011, 1204.4127.

[5]  M. Scheffler,et al.  New perspective on formation energies and energy levels of point defects in nonmetals. , 2012, Physical review letters.

[6]  Weichao Wang,et al.  Sulfur passivation effect on HfO2/GaAs interface: A first-principles study , 2011 .

[7]  A. Demkov Investigating Alternative Gate Dielectrics: A Theoretical Approach , 2001 .

[8]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[9]  R. Nieminen,et al.  Interfacial oxide growth at silicon/high-k oxide interfaces: First principles modeling of the Si-HfO2 interface , 2006 .

[10]  R. Ramprasad,et al.  Local properties at interfaces in nanodielectrics: An ab initio computational study , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[11]  R. Ramprasad,et al.  Stability and work function of TiC$_{x}$N$_{1-x}$ alloy surfaces: Density functional theory calculations , 2009 .

[12]  Paul R. Chalker,et al.  Permittivity enhancement of hafnium dioxide high-κ films by cerium doping , 2008 .

[13]  R. Ramprasad,et al.  Oxygen defect accumulation at Si:HfO2 interfaces , 2008 .

[14]  Eric Garfunkel,et al.  Band offsets of ultrathin high- κ oxide films with Si , 2008 .

[15]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[16]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[17]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[18]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[19]  A. Shluger,et al.  Mechanism of interstitial oxygen diffusion in hafnia. , 2002, Physical review letters.

[20]  D. Vanderbilt,et al.  Structural and dielectric properties of crystalline and amorphous ZrO2 , 2005 .

[21]  Thomas Mikolajick,et al.  Metal oxide memories based on thermochemical and valence change mechanisms , 2012 .

[22]  A. Dimoulas,et al.  Ge volatilization products in high-k gate dielectrics , 2011 .

[23]  J. Robertson,et al.  Defect states at III-V semiconductor oxide interfaces , 2011 .

[24]  T. Yamasaki,et al.  Oxygen-related defects in amorphous HfO2 gate dielectrics , 2007 .

[25]  G. Rignanese,et al.  First-principles investigation of high-κ dielectrics: Comparison between the silicates and oxides of hafnium and zirconium , 2004 .

[26]  David Vanderbilt,et al.  Phonons and lattice dielectric properties of zirconia , 2001, cond-mat/0108491.

[27]  Gian-Marco Rignanese,et al.  Dielectric properties of crystalline and amorphous transition metal oxides and silicates as potential high-κ candidates: the contribution of density-functional theory , 2005 .

[28]  A. Pasquarello,et al.  Alignment of defect levels and band edges through hybrid functionals: Effect of screening in the exchange term , 2010 .

[29]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[30]  Control of silicidation in HfO2∕Si(100) interfaces , 2005 .

[31]  Gerbrand Ceder,et al.  First-principles study of native point defects in hafnia and zirconia , 2007 .

[32]  Lara K. Teles,et al.  Approximation to density functional theory for the calculation of band gaps of semiconductors , 2008, 0808.0729.

[33]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[34]  A. Pasquarello,et al.  First principles investigation of defects at interfaces between silicon and amorphous high-κ oxides , 2007 .

[35]  E. Janzén,et al.  Accurate defect levels obtained from the HSE06 range-separated hybrid functional , 2010 .

[36]  H. Hwang,et al.  Ti gate compatible with atomic-layer-deposited HfO2 for n-type metal-oxide-semiconductor devices , 2005 .

[37]  A. Janotti,et al.  The role of oxygen-related defects and hydrogen impurities in HfO2 and ZrO2 , 2011 .

[38]  R. Ramprasad,et al.  The stability and work function of TaCxN1−x alloy surfaces , 2011 .

[39]  Systematic study on work-function-shift in metal/Hf-based high-k gate stacks , 2009 .

[40]  Alfredo Pasquarello,et al.  Oxygen vacancy in monoclinic HfO2: A consistent interpretation of trap assisted conduction, direct electron injection, and optical absorption experiments , 2006 .

[41]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[42]  A. Pasquarello,et al.  Formation of substoichiometric GeOx at the Ge-HfO2 interface , 2010 .

[43]  A. Curioni,et al.  Ab initio design of high-k dielectrics: La(x)Y1-xAlO3. , 2005, Physical review letters.

[44]  Mircea Modreanu,et al.  Electrical, structural, and chemical properties of HfO2 films formed by electron beam evaporation , 2008 .

[45]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[46]  J. Robertson Band offsets of high dielectric constant gate oxides on silicon , 2002 .

[47]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[48]  Electronics of the SiO2/HfO2 interface by soft X-ray photoemission spectroscopy , 2004 .

[49]  F. Giustino,et al.  Dielectric discontinuity at interfaces in the atomic-scale limit: permittivity of ultrathin oxide films on silicon. , 2003, Physical review letters.

[50]  A. Curioni,et al.  Anomalous behavior of the dielectric constant of hafnium silicates: a first principles study. , 2006, Physical review letters.

[51]  Michele Parrinello,et al.  Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia , 1999 .

[52]  V. Fiorentini,et al.  Theoretical evaluation of zirconia and hafnia as gate oxides for si microelectronics. , 2002, Physical review letters.

[53]  N. Vast,et al.  Ab Initio calculations of the anisotropic dielectric tensor of GaAs/AlAs superlattices. , 2002, Physical review letters.

[54]  Pascale Mazoyer,et al.  Evolution of materials technology for stacked-capacitors in 65 nm embedded-DRAM , 2005 .

[55]  Joongoo Kang,et al.  First-principles study of the structural phase transformation of hafnia under pressure , 2003 .

[56]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[57]  Paul R. Chalker,et al.  Deposition of lanthanum zirconium oxide high-κ films by liquid injection atomic layer deposition , 2007 .

[58]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[59]  Seung Mi Lee,et al.  Thickness measurement of a thin hetero-oxide film with an interfacial oxide layer by X-ray photoelectron spectroscopy , 2012 .

[60]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[61]  J. Robertson Band offsets of wide-band-gap oxides and implications for future electronic devices , 2000 .

[62]  Alfredo Pasquarello,et al.  A hybrid functional scheme for defect levels and band alignments at semiconductor–oxide interfaces , 2010 .

[63]  P. Blaise,et al.  Ab initio calculation of Effective Work Functions for a TiN/HfO2/SiO2/Si transistor stack , 2011, 1112.2163.

[64]  A. Pasquarello,et al.  Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations. , 2008, Physical review letters.

[65]  L. Bellaiche,et al.  First-principles determination of electromechanical responses of solids under finite electric fields. , 2003, Physical review letters.

[66]  L. Fonseca,et al.  First-principles calculation of the TiN effective work function on Si O 2 and on Hf O 2 , 2006 .

[67]  J. E. Rowe,et al.  Band offsets for ultrathin SiO2 and Si3N4 films on Si(111) and Si(100) from photoemission spectroscopy , 1999 .

[68]  Energy barriers at interfaces of (100)GaAs with atomic layer deposited Al2O3 and HfO2 , 2008 .

[69]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[70]  Alfred Kersch,et al.  Stabilization of the high-k tetragonal phase in HfO2: The influence of dopants and temperature from ab initio simulations , 2008 .

[71]  Jane P. Chang,et al.  First-principles exploration of alternative gate dielectrics: Electronic structure of ZrO2/Si and ZrSiO4/Si interfaces , 2004 .

[72]  Schultz,et al.  Charged local defects in extended systems , 2000, Physical review letters.

[73]  D. Vanderbilt,et al.  Si-compatible candidates for high-κ dielectrics with the Pbnm perovskite structure , 2010, 1005.2767.

[74]  V. Narayanan,et al.  Oxygen vacancies in high dielectric constant oxide-semiconductor films. , 2007, Physical review letters.

[75]  Observation of spin-dependent transport and large magnetoresistance in La0.7Sr0.3MnO3/SrTiO3/La0.7Sr0.3MnO3 ramp-edge junctions , 1998 .

[76]  J. Robertson Band offsets and work function control in field effect transistors , 2009 .

[77]  Rabe,et al.  First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.

[78]  M. Perego,et al.  Conduction band offset of HfO2 on GaAs , 2007 .

[79]  Atomic-scale dielectric permittivity profiles in slabs and multilayers , 2006 .

[80]  E. Cockayne Effect of ionic substitutions on the structure and dielectric properties of hafnia: A first principles study , 2008 .

[81]  Ab initiostudy of oxygen interstitial diffusion nearSi:HfO2interfaces , 2007 .

[82]  B. Park,et al.  Segregation of oxygen vacancy at metal-HfO2 interfaces , 2008 .

[83]  Y. Nishi,et al.  Characteristics and mechanism of tunable work function gate electrodes using a bilayer metal structure on SiO/sub 2/ and HfO/sub 2/ , 2005, IEEE Electron Device Letters.

[84]  A. Shluger,et al.  Vacancy and interstitial defects in hafnia , 2002 .

[85]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[86]  Quasiparticle calculations of the electronic properties of ZrO2 and HfO2 polymorphs and their interface with Si , 2009, 0912.1977.

[87]  David Vanderbilt,et al.  First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002 .

[88]  A. Pasquarello,et al.  Band alignments and defect levels in Si–HfO2 gate stacks: Oxygen vacancy and Fermi-level pinning , 2008 .

[89]  Mikko Ritala,et al.  Tailoring the dielectric properties of HfO2–Ta2O5 nanolaminates , 1996 .

[90]  Sang-Won Kang,et al.  Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3 , 2006 .

[91]  M. Gutowski,et al.  Low-temperature Polymorphs of ZrO2 and HfO2. A Density Functional Theory Study , 2005 .

[92]  R. Ramprasad,et al.  Ab initio calculation of the CdSe/CdTe heterojunction band offset using the local-density approximation-1/2 technique with spin-orbit corrections , 2012 .

[93]  C. Wiemer,et al.  Epitaxial anatase HfO2 on high-mobility substrate for ultra-scaled CMOS devices , 2008 .

[94]  R. E. Hann,et al.  Monoclinic Crystal Structures of ZrO2 and HfO2 Refined from X‐ray Powder Diffraction Data , 1985 .

[95]  Guido Groeseneken,et al.  Electrical properties of high-κ gate dielectrics: Challenges, current issues, and possible solutions , 2006 .

[96]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[97]  Jane P. Chang,et al.  Development of hafnium based high-k materials—A review , 2011 .

[98]  Band engineering at interfaces : Theory and numerical experiments , 1998 .

[99]  J. Robertson,et al.  Atomic mechanism of electric dipole formed at high-K: SiO2 interface , 2011 .

[100]  Weichao Wang,et al.  Impact of Interfacial Oxygen Content on Bonding, Stability, Band Offsets, and Interface States of GaAs:HfO2 Interfaces , 2010 .

[101]  R. Cernik,et al.  X-ray diffraction study of Hafnia under high pressure using synchrotron radiation , 1991 .

[102]  David Vanderbilt,et al.  Polarization-based calculation of the dielectric tensor of polar crystals , 1997 .

[103]  L. Fonseca,et al.  Accurate prediction of the `Si/SiO IND.2´ interface band offset using the self-consistent ab initio DFT/LDA-1/2 method , 2009 .

[104]  A. Demkov,et al.  Difficulties of the microscopic theory of leakage current through ultra‐thin oxide barriers: point defects , 2003 .

[105]  Weichao Wang,et al.  Si passivation effects on atomic bonding and electronic properties at HfO2/GaAs interface: A first-principles study , 2011 .

[106]  M. Scheffler,et al.  Converged properties of clean metal surfaces by all-electron first-principles calculations , 2006 .

[107]  M. Nardelli,et al.  Collective polarization effects in β-polyvinylidene fluoride and its copolymers with tri- and tetrafluoroethylene , 2005 .

[108]  C. Hwang,et al.  Permittivity Enhanced Atomic Layer Deposited HfO2 Thin Films Manipulated by a Rutile TiO2 Interlayer , 2010 .

[109]  Suman Datta,et al.  Gate Oxides Beyond SiO_2 , 2008 .

[110]  A. Pasquarello,et al.  Defect energy levels in density functional calculations: alignment and band gap problem. , 2008, Physical review letters.

[111]  Alexander A. Demkov,et al.  Materials Fundamentals of Gate Dielectrics , 2005 .

[112]  Hideki Takeuchi,et al.  Observation of bulk HfO2 defects by spectroscopic ellipsometry , 2004 .

[113]  Robert M. Wallace,et al.  High-κ Dielectric Materials for Microelectronics , 2003 .

[114]  E. Vogel,et al.  Is interfacial chemistry correlated to gap states for high-k/III-V interfaces? , 2011 .

[115]  Y. Dong,et al.  Chemical tuning of band alignments for metal gate/high-κ oxide interfaces , 2006 .

[116]  John Robertson,et al.  Interfaces and defects of high-K oxides on silicon , 2005 .

[117]  A. Pasquarello,et al.  Band gaps and dielectric constants of amorphous hafnium silicates: A first-principles investigation , 2007 .

[118]  R. Ramprasad,et al.  Dielectric properties of ultrathin SiO2 slabs , 2005 .

[119]  A. Kersch,et al.  The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles , 2008 .

[120]  T. Nabatame,et al.  Void nucleation in thin HfO2 layer on Si , 2003 .

[121]  G. Dalapati,et al.  Energy-band alignments of HfO2 on p-GaAs substrates , 2008 .

[122]  G. Lo,et al.  Wide $V_{\rm fb}$ and $V_{\rm th}$ Tunability for Metal-Gated MOS Devices With HfLaO Gate Dielectrics , 2007, IEEE Electron Device Letters.

[123]  L. G. Ferreira,et al.  First-principles calculation of the AlAs/GaAs interface band structure using a self-energy–corrected local density approximation , 2011 .

[124]  A. Pasquarello,et al.  First principles investigation of defect energy levels at semiconductor-oxide interfaces: Oxygen vacancies and hydrogen interstitials in the Si–SiO2–HfO2 stack , 2009 .

[125]  G. Pourtois,et al.  Te-induced modulation of the Mo∕HfO2 interface effective work function , 2008 .

[126]  D. Kwong,et al.  Decoupling the Fermi-level pinning effect and intrinsic limitations on p-type effective work function metal electrodes , 2008 .

[127]  Matthias Scheffler,et al.  Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial. , 2008, Physical review letters.

[128]  B. E. White,et al.  Contributions to the effective work function of platinum on hafnium dioxide , 2004 .

[129]  Long-range Coulomb interaction in ZrO2 , 1998 .

[130]  M. Stoker,et al.  Oxidation of the Pt∕HfO2 interface: The role of the oxygen chemical potential , 2007 .

[131]  Y. J. Lee,et al.  Structural and electrical characteristics of atomic layer deposited high κ HfO2 on GaN , 2007 .

[132]  Chemistry and band offsets of HfO2 thin films for gate insulators , 2003 .

[133]  Alfredo Pasquarello,et al.  Identification of defect levels at InxGa1-xAs/oxide interfaces through hybrid functionals , 2011 .

[134]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[135]  J. K. Dewhurst,et al.  Relative stability of ZrO 2 and HfO 2 structural phases , 1999 .

[136]  Origin of HfO2/GaAs interface states and interface passivation: A first principles study , 2010 .

[137]  Sandwip Dey,et al.  Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2 , 2006 .

[138]  A. Pasquarello,et al.  Defect levels through hybrid density functionals: Insights and applications , 2011 .

[139]  S. Louie,et al.  Reliability of hybrid functionals in predicting band gaps. , 2011, Physical review letters.

[140]  Rampi Ramprasad,et al.  Dielectric properties of nanoscale Hf O 2 slabs , 2005 .

[141]  R. Dutton,et al.  Perspectives paper: First principles modeling of high-k gate dielectrics , 2001 .

[142]  Astronomy,et al.  Amorphous ZrO2 from Ab-initio molecular dynamics: Structural, electronic and dielectric properties , 2004, cond-mat/0403131.

[143]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[144]  D. Kwong,et al.  Fermi pinning-induced thermal instability of metal-gate work functions , 2004, IEEE Electron Device Letters.

[145]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[146]  John Robertson,et al.  Extended Frenkel pairs and band alignment at metal-oxide interfaces , 2009 .

[147]  Hiroshi Iwai,et al.  On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors , 2006 .

[148]  Nicola A. Spaldin,et al.  Origin of the dielectric dead layer in nanoscale capacitors , 2006, Nature.

[149]  F. J. Himpsel,et al.  Microscopic structure of the SiO 2 /Si interface , 1988 .

[150]  Free energy and molecular dynamics calculations for the cubic- tetragonal phase transition in zirconia , 2001, cond-mat/0102526.

[151]  M. Scheffler,et al.  Electronic band structure of zirconia and hafnia polymorphs from the GW perspective , 2010 .

[152]  Hongwei Liu,et al.  Phase separation and interfacial reaction of high-k HfAlOx films prepared by pulsed-laser deposition in oxygen-deficient ambient , 2006 .

[153]  J. Kavalieros,et al.  Integrated nanoelectronics for the future. , 2007, Nature materials.

[154]  A study of Hf vacancies at Si:HfO2 heterojunctions , 2008 .

[155]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[156]  J. Woicik,et al.  Band alignment of atomic layer deposited HfO2 on clean and N passivated germanium surfaces , 2010 .

[157]  G. A. Farias,et al.  Effective masses and complex dielectric function of cubic HfO2 , 2004, 1204.2895.

[158]  R. Ryberg,et al.  ATOMIC OXYGEN ON A PT(111) SURFACE STUDIED BY INFRARED SPECTROSCOPY , 1999 .

[159]  John Robertson,et al.  Impact of incorporated Al on the TiN/HfO2 interface effective work function , 2008 .

[160]  H. Aourag,et al.  First principles calculations of structural, elastic and electronic properties of XO2 (X = Zr, Hf and Th) in fluorite phase , 2005 .

[161]  Martin M. Frank,et al.  Hafnium oxide gate dielectrics on sulfur-passivated germanium , 2006 .

[162]  John Robertson,et al.  Model of interface states at III-V oxide interfaces , 2009 .

[163]  Jaekwang Lee,et al.  Density functional theory of high-k dielectric gate stacks , 2007 .

[164]  Chenming Hu,et al.  Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology , 2002 .

[165]  R. Ramprasad,et al.  Point defect chemistry in amorphous HfO 2 : Density functional theory calculations , 2010 .

[166]  J. Hafner,et al.  Structural, electronic and magnetic properties of the surfaces of tetragonal and cubic HfO2 , 2008 .

[167]  T. Hou,et al.  Electrode dependence of filament formation in HfO2 resistive-switching memory , 2011 .

[168]  M. Paffett,et al.  Chemisorption of carbon monoxide, hydrogen, and oxygen on ordered tin/platinum(111) surface alloys , 1990 .

[169]  R. Ramprasad,et al.  Local dielectric permittivity of HfO2 based slabs and stacks: A first principles study , 2007 .

[170]  Supratik Guha,et al.  High-κ/Metal Gate Science and Technology , 2009 .

[171]  A. Pasquarello,et al.  Migration of oxygen vacancy in HfO2 and across the HfO2∕SiO2 interface: A first-principles investigation , 2007 .