Stimulus-specific plasticity of macaque V1 spike rates and gamma

When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here we show in awake macaque area V1 that both, repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects showed some persistence on the timescale of minutes. Further, gamma increases were specific to the presented stimulus location. Importantly, repetition effects on gamma and on firing rates generalized to natural images. These findings suggest that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters, both for generating efficient stimulus responses and possibly for memory formation.

[1]  N. Kopell,et al.  Olfactory Bulb Gamma Oscillations Are Enhanced with Task Demands , 2007, The Journal of Neuroscience.

[2]  P. Dayan,et al.  Space and time in visual context , 2007, Nature Reviews Neuroscience.

[3]  Peter De Weerd,et al.  Author response: A quantitative theory of gamma synchronization in macaque V1 , 2017 .

[4]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[5]  M. Vinck,et al.  Source (or Part of the following Source): Type Article Title Learning-associated Gamma-band Phase-locking of Action-outcome Selective Neurons in Orbitofrontal Cortex Author(s) Learning-associated Gamma-band Phase-locking of Action–outcome Selective Neurons in Orbitofrontal Cortex Gamma Oscillations , 2022 .

[6]  K. Grill-Spector,et al.  Repetition and the brain: neural models of stimulus-specific effects , 2006, Trends in Cognitive Sciences.

[7]  Valentin Dragoi,et al.  Adaptive Changes in Neuronal Synchronization in Macaque V4 , 2011, The Journal of Neuroscience.

[8]  Peter De Weerd,et al.  A quantitative theory of gamma synchronization in macaque V1 , 2017, eLife.

[9]  W. Singer,et al.  Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1 , 2009, Cerebral cortex.

[10]  Paola Binda,et al.  Attention to Bright Surfaces Enhances the Pupillary Light Reflex , 2013, The Journal of Neuroscience.

[11]  Gernot G. Supp,et al.  Oscillatory MEG gamma band activity dissociates perceptual and conceptual aspects of visual object processing: A combined repetition/conceptual priming study , 2012, NeuroImage.

[12]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Kohn,et al.  Distinct Effects of Brief and Prolonged Adaptation on Orientation Tuning in Primary Visual Cortex , 2013, The Journal of Neuroscience.

[14]  Harvey A Swadlow,et al.  Hour-long adaptation in the awake early visual system. , 2015, Journal of neurophysiology.

[15]  W. Singer,et al.  Predictive coding of natural images by V1 activity revealed by self-supervised deep neural networks , 2021 .

[16]  Bijan Pesaran,et al.  Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation , 2018, Nature Neuroscience.

[17]  R. Vogels,et al.  Effect of adapter duration on repetition suppression in inferior temporal cortex , 2017, Scientific Reports.

[18]  C. Olson,et al.  Repetition suppression in monkey inferotemporal cortex: relation to behavioral priming. , 2007, Journal of neurophysiology.

[19]  Rufin Vogels,et al.  Recent Visual Experience Shapes Visual Processing in Rats through Stimulus-Specific Adaptation and Response Enhancement , 2017, Current Biology.

[20]  S. Nelson,et al.  Rapid learning in visual cortical networks , 2015, eLife.

[21]  David L. Sheinberg,et al.  Effects of Long-Term Visual Experience on Responses of Distinct Classes of Single Units in Inferior Temporal Cortex , 2012, Neuron.

[22]  Svetlana S. Georgieva,et al.  Using Functional Magnetic Resonance Imaging to Assess Adaptation and Size Invariance of Shape Processing by Humans and Monkeys , 2005, The Journal of Neuroscience.

[23]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[24]  Chris Tailby,et al.  Adaptable Mechanisms That Regulate the Contrast Response of Neurons in the Primate Lateral Geniculate Nucleus , 2009, The Journal of Neuroscience.

[25]  G. Knudsen,et al.  Cortical modulation of pupillary function: systematic review , 2019, PeerJ.

[26]  R. Vogels,et al.  Effects of adaptation on the stimulus selectivity of macaque inferior temporal spiking activity and local field potentials. , 2010, Cerebral cortex.

[27]  Everton J. Agnes,et al.  Inhibitory Plasticity: Balance, Control, and Codependence. , 2017, Annual review of neuroscience.

[28]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[29]  G. Laurent,et al.  Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts , 2007, Nature.

[30]  R. Desimone,et al.  Activity of neurons in anterior inferior temporal cortex during a short- term memory task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Nancy Kopell,et al.  Effects of Noisy Drive on Rhythms in Networks of Excitatory and Inhibitory Neurons , 2005, Neural Computation.

[32]  A. Angelucci,et al.  Circuits and Mechanisms for Surround Modulation in Visual Cortex. , 2017, Annual review of neuroscience.

[33]  Alfredo Kirkwood,et al.  Adrenergic Gating of Hebbian Spike-Timing-Dependent Plasticity in Cortical Interneurons , 2013, The Journal of Neuroscience.

[34]  Pascal Fries,et al.  Human visual cortical gamma reflects natural image structure , 2019, NeuroImage.

[35]  Wolf Singer,et al.  Predictability in natural images determines V1 firing rates and synchronization: A deep neural network approach , 2020, bioRxiv.

[36]  Carson C. Chow,et al.  Repetition priming and repetition suppression: A case for enhanced efficiency through neural synchronization , 2012, Cognitive neuroscience.

[37]  I. Hooge,et al.  Inhibition of return is not a foraging facilitator in saccadic search and free viewing , 2005, Vision Research.

[38]  Michael J. Berry,et al.  Predictive Coding of Novel versus Familiar Stimuli in the Primary Visual Cortex , 2017, bioRxiv.

[39]  Rufin Vogels,et al.  Stimulus repetition affects both strength and synchrony of macaque inferior temporal cortical activity. , 2012, Journal of neurophysiology.

[40]  Henry J. Alitto,et al.  Simultaneous Recordings from the Primary Visual Cortex and Lateral Geniculate Nucleus Reveal Rhythmic Interactions and a Cortical Source for Gamma-Band Oscillations , 2014, The Journal of Neuroscience.

[41]  P. Fries,et al.  Stimulus-specific plasticity in human visual gamma-band activity and functional connectivity , 2020, bioRxiv.

[42]  W. Singer,et al.  Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex , 2009, PLoS biology.

[43]  H. Vaughan,et al.  Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials , 1980, Journal of Neuroscience Methods.

[44]  R. Desimone,et al.  Stimulus repetition modulates gamma-band synchronization in primate visual cortex , 2014, Proceedings of the National Academy of Sciences.

[45]  G. Laurent,et al.  Odor encoding as an active, dynamical process: experiments, computation, and theory. , 2001, Annual review of neuroscience.

[46]  Peng Wang,et al.  An LCD Monitor with Sufficiently Precise Timing for Research in Vision , 2011, Front. Hum. Neurosci..

[47]  Ralf Engbert,et al.  Microsaccades uncover the orientation of covert attention , 2003, Vision Research.

[48]  Valentin Dragoi,et al.  Adaptation-induced synchronization in laminar cortical circuits , 2011, Proceedings of the National Academy of Sciences.

[49]  G. Tononi,et al.  Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep , 2008, Nature Neuroscience.

[50]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[51]  R. Vogels,et al.  Neurons in Macaque Inferior Temporal Cortex Show No Surprise Response to Deviants in Visual Oddball Sequences , 2014, The Journal of Neuroscience.

[52]  Adam Kohn,et al.  The influence of surround suppression on adaptation effects in primary visual cortex. , 2012, Journal of neurophysiology.

[53]  Martin Vinck,et al.  Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations , 2018, bioRxiv.

[54]  W. Singer,et al.  Gamma Responses Correlate with Temporal Expectation in Monkey Primary Visual Cortex , 2011, The Journal of Neuroscience.

[55]  M. A. Smith,et al.  Stimulus Selectivity and Spatial Coherence of Gamma Components of the Local Field Potential , 2011, The Journal of Neuroscience.

[56]  Mark F Bear,et al.  Visual Experience Induces Long-Term Potentiation in the Primary Visual Cortex , 2010, The Journal of Neuroscience.

[57]  Marco Idiart,et al.  A Second Function of Gamma Frequency Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells Fire , 2009, The Journal of Neuroscience.

[58]  G. Laurent,et al.  Short-term memory in olfactory network dynamics , 1999, Nature.

[59]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[60]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[61]  Adam P. Morris,et al.  The (un)suitability of modern liquid crystal displays (LCDs) for vision research , 2015, Front. Psychol..

[62]  Stephen J. Gotts,et al.  Human Neuroscience , 2022 .

[63]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[64]  Rufin Vogels,et al.  Sources of adaptation of inferior temporal cortical responses , 2016, Cortex.

[65]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[66]  M. Bar,et al.  The effects of priming on frontal-temporal communication , 2008, Proceedings of the National Academy of Sciences.

[67]  W. Singer,et al.  A Distinct Class of Bursting Neurons with Strong Gamma Synchronization and Stimulus Selectivity in Monkey V1 , 2019, Neuron.

[68]  Peter König,et al.  Saccadic Momentum and Facilitation of Return Saccades Contribute to an Optimal Foraging Strategy , 2013, PLoS Comput. Biol..

[69]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[70]  Ueli Rutishauser,et al.  Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. , 2013, Journal of vision.

[71]  David A. Leopold,et al.  Motion-Sensitive Responses in Visual Area V4 in the Absence of Primary Visual Cortex , 2013, The Journal of Neuroscience.

[72]  J. Maessen,et al.  Visual exposure , 2019, ASVIDE.

[73]  R. Oostenveld,et al.  A MEMS-based flexible multichannel ECoG-electrode array , 2009, Journal of neural engineering.

[74]  S. Solomon,et al.  Moving Sensory Adaptation beyond Suppressive Effects in Single Neurons , 2014, Current Biology.

[75]  T. Sejnowski,et al.  Fast Odor Learning Improves Reliability of Odor Responses in the Locust Antennal Lobe , 2005, Neuron.

[76]  W. Singer,et al.  Visual exposure optimizes stimulus encoding in primary visual cortex , 2018, bioRxiv.

[77]  Pieter R. Roelfsema,et al.  Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation , 2013, Current Biology.

[78]  R. Simon,et al.  Controlling the number of false discoveries: application to high-dimensional genomic data , 2004 .

[79]  G. Tononi,et al.  Human cortical excitability increases with time awake. , 2013, Cerebral cortex.

[80]  Valentin Dragoi,et al.  Author response: Rapid learning in visual cortical networks , 2015 .

[81]  E. Garcia-Rill,et al.  Gamma Band Activity , 2015 .

[82]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[83]  Supratim Ray,et al.  Long-wavelength (reddish) hues induce unusually large gamma oscillations in the primate primary visual cortex , 2018, Proceedings of the National Academy of Sciences.

[84]  Jochen Kaiser,et al.  Repetition suppression and effects of familiarity on blood oxygenation level dependent signal and gamma-band activity , 2012, Neuroreport.

[85]  D. Tank,et al.  A Long Timescale Stimulus History Effect in the Primary Visual Cortex , 2019, bioRxiv.

[86]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[87]  W. Singer,et al.  Visual exposure enhances stimulus encoding and persistence in primary cortex , 2021, Proceedings of the National Academy of Sciences.

[88]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[89]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[90]  Liping Wang,et al.  Large-Scale Cortical Networks for Hierarchical Prediction and Prediction Error in the Primate Brain , 2018, Neuron.

[91]  Martin Vinck,et al.  The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization , 2010, NeuroImage.

[92]  O. Schwartz,et al.  Specificity and timescales of cortical adaptation as inferences about natural movie statistics , 2016, Journal of vision.

[93]  R. Shapley,et al.  Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a “Clock” or Filtered Noise? , 2011, The Journal of Neuroscience.

[94]  A. Sillito,et al.  Surround suppression in primate V1. , 2001, Journal of neurophysiology.

[95]  G. Kovács,et al.  Does surprise enhancement or repetition suppression explain visual mismatch negativity? , 2016, The European journal of neuroscience.

[96]  Karl J. Friston,et al.  Repetition suppression and its contextual determinants in predictive coding , 2016, Cortex.