Simulation of Conditioned Diffusions on the Flat Torus
暂无分享,去创建一个
Stefan Sommer | Anton Mallasto | Mathias Hojgaard Jensen | Mathias Højgaard Jensen | S. Sommer | Anton Mallasto
[1] C. Sogge. Hangzhou lectures on eigenfunctions of the Laplacian , 2014 .
[2] Stefan Sommer,et al. Bridge Simulation and Metric Estimation on Landmark Manifolds , 2017, GRAIL/MFCA/MICGen@MICCAI.
[3] A. Veretennikov. On the Strong Solutions of Stochastic Differential Equations , 1980 .
[4] M. Émery. Stochastic Calculus in Manifolds , 1989 .
[5] A. Novikov. On an Identity for Stochastic Integrals , 1973 .
[6] K. Mardia,et al. A Generative Angular Model of Protein Structure Evolution , 2016, Molecular biology and evolution.
[7] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[8] Elton P. Hsu. Stochastic analysis on manifolds , 2002 .
[9] A. Veretennikov. ON STRONG SOLUTIONS AND EXPLICIT FORMULAS FOR SOLUTIONS OF STOCHASTIC INTEGRAL EQUATIONS , 1981 .
[10] B. Delyon,et al. Simulation of conditioned diffusion and application to parameter estimation , 2006 .
[11] Kanti V. Mardia,et al. Langevin diffusions on the torus: estimation and applications , 2017, Statistics and Computing.
[12] M. Jorge Cardoso,et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics , 2017, Lecture Notes in Computer Science.