Exploring the use of biosurfactants from Bacillus subtilis in bionanotechnology: A potential dispersing agent for carbon nanotube ecotoxicological studies

[1]  M. Wiemann,et al.  Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA) , 2013, Journal of Nanoparticle Research.

[2]  D. Cui,et al.  Dendrimer Modified SWCNTs for High Efficient Delivery and Intracellular Imaging of Survivin siRNA , 2013 .

[3]  O. L. Alves,et al.  Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes , 2013, Journal of Nanoparticle Research.

[4]  B. Nowack,et al.  Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium. , 2012, Environmental pollution.

[5]  F. Witzmann,et al.  Size dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes. , 2012, Journal of environmental monitoring : JEM.

[6]  D. Cui,et al.  Advances in the Toxicity of Nanomaterials , 2012 .

[7]  Stefan Seeger,et al.  Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world , 2012, Journal of Nanoparticle Research.

[8]  R. Mezzenga,et al.  Carbon nanotubes in the liquid phase: addressing the issue of dispersion. , 2012, Small.

[9]  A. G. S. Filho,et al.  Optical properties of single wall carbon nanotubes dispersed in biopolymers , 2012 .

[10]  Elijah J Petersen,et al.  Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: Review , 2012, Environmental toxicology and chemistry.

[11]  Kirk J Ziegler,et al.  Aqueous suspension methods of carbon‐based nanomaterials and biological effects on model aquatic organisms , 2012, Environmental toxicology and chemistry.

[12]  G. S. Kiran,et al.  Biosurfactants as green stabilizers for the biological synthesis of nanoparticles , 2011, Critical reviews in biotechnology.

[13]  M. Eberlin,et al.  Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry , 2011 .

[14]  M. Terrones,et al.  Evaluating the characteristics of multiwall carbon nanotubes , 2011 .

[15]  Arnaud Magrez,et al.  Are carbon nanotube effects on green algae caused by shading and agglomeration? , 2011, Environmental science & technology.

[16]  Jin Sik Kim,et al.  Evaluation of biocompatible dispersants for carbon nanotube toxicity tests , 2011, Archives of Toxicology.

[17]  Masaaki Nagatsu,et al.  Carbon nanotubes as adsorbents in environmental pollution management: A review , 2011 .

[18]  M. Eberlin,et al.  Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol , 2011, Journal of Industrial Microbiology & Biotechnology.

[19]  Minghua Li,et al.  The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: Effect of physical–chemical treatment , 2011 .

[20]  Martin Hassellöv,et al.  Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples , 2011 .

[21]  A. G. S. Filho,et al.  Understanding the interaction of multi-walled carbon nanotubes with mutagenic organic pollutants using computational modeling and biological experiments , 2011 .

[22]  Tânia M. S. Lima,et al.  Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. , 2011, Bioresource technology.

[23]  R. Krishnamoorti,et al.  Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. , 2011, Journal of colloid and interface science.

[24]  Kan Wang,et al.  Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells , 2010, Nanoscale research letters.

[25]  Pedro J. J. Alvarez,et al.  Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. , 2010, ACS nano.

[26]  I. Banat,et al.  Microbial biosurfactants production, applications and future potential , 2010, Applied Microbiology and Biotechnology.

[27]  Menachem Elimelech,et al.  Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. , 2010, Environmental science & technology.

[28]  C. Mulligan Recent advances in the environmental applications of biosurfactants , 2009 .

[29]  Elijah J Petersen,et al.  Biological uptake and depuration of carbon nanotubes by Daphnia magna. , 2009, Environmental science & technology.

[30]  Xiaoshan Zhu,et al.  Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna , 2009 .

[31]  L. O. Teles,et al.  Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. , 2007, Environment international.

[32]  D. Cui Advances and prospects on biomolecules functionalized carbon nanotubes. , 2007, Journal of nanoscience and nanotechnology.

[33]  Rui Qiao,et al.  In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. , 2007, Environmental science & technology.

[34]  H. Schwarz,et al.  Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. , 2006, Toxicology in vitro : an international journal published in association with BIBRA.

[35]  F. Wei,et al.  The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry , 2006 .

[36]  R. Darton,et al.  Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone , 2005 .