Role of self-trapping in luminescence and p -type conductivity of wide-band-gap oxides

We investigate the behavior of holes in the valence band of a range of wide-band-gap oxides including ZnO, MgO, In2O3 ,G a2O3 ,A l2O3 ,S nO2 ,S iO2 ,a nd TiO2. Based on hybrid functional calculations, we find that, due to the orbital composition of the valence band, holes tend to form localized small polarons with characteristic lattice distortions, even in the absence of defects or impurities. These self-trapped holes (STHs) are energetically more favorable than delocalized, free holes in the valence band in all materials but ZnO and SiO2. Based on calculated optical absorption and emission energies we show that STHs provide an explanation for the luminescence peaks that have been observed in many of these oxides. We demonstrate that polaron formation prohibits p-type conductivity in this class of materials.

[1]  S. Lany Predicting polaronic defect states by means of generalized Koopmans density functional calculations , 2011 .

[2]  M. Gu,et al.  Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles , 2007 .

[3]  K. Shimamura,et al.  Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals , 2008 .

[4]  Noriaki Itoh,et al.  Materials modification by electronic excitation , 1998 .

[5]  E. L. Cook,et al.  Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators , 1973 .

[6]  J. Pascual,et al.  Resolved Quadrupolar Transition in TiO 2 , 1977 .

[7]  G. Kresse,et al.  Polaronic hole trapping in doped BaBiO3. , 2008, Physical review letters.

[8]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[9]  J. Paier,et al.  Hybrid functionals applied to extended systems , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  O. Schirmer,et al.  Bound small-polaron optical absorption in germanium-doped quartz , 1987 .

[11]  W. Känzig,et al.  The electronic structure of V-centers , 1957 .

[12]  G. Pacchioni,et al.  Structure and ESR properties of self-trapped holes in pure silica from first-principles density functional calculations , 2007 .

[13]  Itoh,et al.  Threshold energy for photogeneration of self-trapped excitons in SiO2. , 1989, Physical review. B, Condensed matter.

[14]  L. Halliburton,et al.  Photoinduced self-trapped hole center in TiO 2 crystals , 2010 .

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[17]  Alexander L. Shluger,et al.  Trapping, self-trapping and the polaron family , 2007 .

[18]  N. A. Deskins,et al.  Electron transport via polaron hopping in bulk TiO2 : A density functional theory characterization , 2007 .

[19]  D. Cromer,et al.  The Structures of Anatase and Rutile , 1955 .

[20]  S. Geller,et al.  Crystal Structure of β‐Ga2O3 , 1960 .

[21]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[22]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[23]  M. D. Murcia,et al.  Low-temperature photoluminescence in SnO2 high-resistivity monocrystals , 1975 .

[24]  David L. Griscom,et al.  Self-trapped holes in pure-silica glass: A history of their discovery and characterization and an example of their critical significance to industry , 2006 .

[25]  O. Schirmer,et al.  Smoky coloration of quartz caused by bound small hole polaron optical absorption , 1976 .

[26]  J. D. Jorgensen,et al.  Crystal structure and thermal expansion of α‐quartz SiO2 at low temperatures , 1982 .

[27]  R. I. Zakharchenya,et al.  Structure of the self-trapped exciton luminescence in α-Al2O3 , 1998 .

[28]  Marius Grundmann,et al.  Transparent semiconducting oxides: materials and devices , 2010 .

[29]  K. Jacobsen,et al.  Electronic hole localization in rutile and anatase TiO2 – Self-interaction correction in Δ-SCF DFT , 2011 .

[30]  S. Shionoya,et al.  Exciton structure in optical absorption of SnO2 crystals , 1966 .

[31]  Brendan J. Kennedy,et al.  Structural Studies of Rutile-Type Metal Dioxides , 1997 .

[32]  R. French Electronic Band Structure of {Al2O3}, with Comparison to Alon and {AIN} , 1990 .

[33]  R. Newnham,et al.  Refinement of theαAl2O3, Ti2O3, V2O3and Cr2O3structures* , 1962 .

[34]  M. Marezio Refinement of the crystal structure of In2O3 at two wavelengths , 1966 .

[35]  Thomas M Henderson,et al.  Screened hybrid density functionals for solid-state chemistry and physics. , 2009, Physical chemistry chemical physics : PCCP.

[36]  T. Harwig,et al.  Some observations on the photoluminescence of doped β-galliumsesquioxide , 1978 .

[37]  G. Bersuker,et al.  Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. , 2007, Physical review letters.

[38]  P. Sushko,et al.  Modelling of electron and hole trapping in oxides , 2009 .

[39]  R. Egdell,et al.  Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3 , 2009 .

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  Guolong Tan,et al.  Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry , 2005 .

[42]  Z. A. Rachko,et al.  Luminescence of Free and Relaxed Excitons in MgO , 1979 .

[43]  Jacobs,et al.  Quantum chemical simulation of the self-trapped hole in alpha -Al2O3 crystals. , 1992, Physical review letters.

[44]  R. Uecker,et al.  The surface band structure of β-Ga2O3 , 2011 .

[45]  S. Slappendel,et al.  The ultraviolet luminescence of β-galliumsesquioxide , 1978 .